期刊文献+
共找到581篇文章
< 1 2 30 >
每页显示 20 50 100
Application of graphene vertical field effect to regulation of organic light-emitting transistors
1
作者 Hang Song Hao Wu +2 位作者 Hai-Yang Lu Zhi-Hao Yang Long Ba 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期473-478,共6页
The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabric... The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film,confirming that its current switching ratio reaches up to 102.Because of the property of high light transmittance in ion-gel film,the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties.We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET)by the combination of GVFET and graphene OLED,analyzing its electrical and optical properties,and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage. 展开更多
关键词 graphene vertical field effect transistor organic light-emitting transistor ion-gel film gate voltage regulation
在线阅读 下载PDF
Review of gallium oxide based field-effect transistors and Schottky barrier diodes 被引量:8
2
作者 Zeng Liu Pei-Gang Li +3 位作者 Yu-Song Zhi Xiao-Long Wang Xu-Long Chu Wei-Hua Tang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期65-81,共17页
Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and ... Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication. 展开更多
关键词 GALLIUM oxide(Ga2O3) field-effect transistors(FETs) Schottky barrier diodes(SBDs)
在线阅读 下载PDF
Effect of depositing PCBM on perovskite-based metal–oxide–semiconductor field effect transistors 被引量:1
3
作者 Su-Zhen Luan Yu-Cheng Wang +1 位作者 Yin-Tao Liu Ren-Xu Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期391-395,共5页
In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and ... In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller. 展开更多
关键词 metal-oxide-semiconductor field effect transistors photoelectric characteristics PEROVSKITE
在线阅读 下载PDF
Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels 被引量:1
4
作者 Ngoc Huynh Van Jae-Hyun Lee +1 位作者 Dongmok Whang Dae Joon Kang 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期35-41,共7页
A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferr... A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102. 展开更多
关键词 Si nanowires field effect transistor Ferroelectric memory
在线阅读 下载PDF
Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors 被引量:12
5
作者 Sohail Ahmed Jiabao Yi 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期152-174,共23页
Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero... Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices. 展开更多
关键词 2D materials TMDC layers Charge carrier mobility field-effect transistor HETEROSTRUCTURE Charge carrier scattering
在线阅读 下载PDF
Field-effect transistors based on two-dimensional materials for logic applications 被引量:3
6
作者 王欣然 施毅 张荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期147-161,共15页
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi... Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors. 展开更多
关键词 graphene MOS2 two-dimensional (2D) materials field-effect transistors
在线阅读 下载PDF
Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors 被引量:1
7
作者 Shi-Li Yan Zhi-Jian Xie +2 位作者 Jian-Hao Chen Takashi Taniguchi Kenji Watanabe 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期87-91,共5页
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o... The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging. 展开更多
关键词 Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus field effect transistors FET BP
在线阅读 下载PDF
Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon 被引量:2
8
作者 Jingqi Li Weisheng Yue +4 位作者 Zaibing Guo Yang Yang Xianbin Wang Ahad A.Syed Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期287-292,共6页
A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire ... A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage(Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs. 展开更多
关键词 Carbon Nanotube field-effect transistors Semi-classical Simulation
在线阅读 下载PDF
Mobility enhancement of strained GaSb p-channel metal-oxide-semiconductor field-effect transistors with biaxial compressive strain 被引量:2
9
作者 陈燕文 谭桢 +6 位作者 赵连锋 王敬 刘易周 司晨 袁方 段文晖 许军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期448-452,共5页
Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show ... Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V.s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxiai compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands. 展开更多
关键词 GASB metal-oxide-semiconductor field-effect transistor STRAIN first principles calculations
在线阅读 下载PDF
A high mobility C_(60) field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes 被引量:1
10
作者 Zhou Jian-Lin Yu Jun-Sheng +1 位作者 Yu Xin-Ge Cai Xin-Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期498-503,共6页
C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophe... C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently. 展开更多
关键词 organic field-effect transistors C60 Bphen passivation layer
在线阅读 下载PDF
A review for compact model of graphene field-effect transistors 被引量:1
11
作者 卢年端 汪令飞 +1 位作者 李泠 刘明 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期96-113,共18页
Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as a... Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed. 展开更多
关键词 two-dimensional material GRAPHENE field-effect transistor compact model
在线阅读 下载PDF
Design consideration and fabrication of 1.2-kV 4H-SiC trenched-and-implanted vertical junction field-effect transistors 被引量:2
12
作者 陈思哲 盛况 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期649-654,共6页
We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mes... We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mesa height, are con- sidered and evaluated by numerical simulations. Based on the simulation result, normally-on and normally-off devices are fabricated. The fabricated device has a 12 μm thick drift layer with 8 × 10^15 cm^-3 N-type doping and 2.6 μm channel length. The normally-on device shows a 1.2 kV blocking capability with a minimum on-state resistance of 2.33 mΩ.cm2, while the normally-off device shows an on-state resistance of 3.85 mΩ.cm2. Both the on-state and the blocking performances of the device are close to the state-of-the-art values in this voltage range. 展开更多
关键词 silicon carbide trenched-and-implanted vertical junction field-effect transistor normally-on device normally-off device
在线阅读 下载PDF
Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz–Christoffel transformation 被引量:1
13
作者 Zhi-Gang Wang Tao Liao Ya-Nan Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期366-373,共8页
A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electri... A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results. 展开更多
关键词 CONFORMAL mapping Schwarz–Christoffel TRANSFORMATION electric field TRENCH metal-oxidesemiconductor field-effect transistor (MOSFET) breakdown voltage
在线阅读 下载PDF
Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap 被引量:1
14
作者 Mohsen Mahmoudi Zahra Ahangari Morteza Fathipour 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期809-816,共8页
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium G... The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain. 展开更多
关键词 SILICENE double-gate field-effect-transistor non-equilibrium Green's function tight binding
在线阅读 下载PDF
Enhanced charge carrier injection in heterojunction organic field-effect transistor by inserting an MoO_3 buffer layer 被引量:1
15
作者 于欣格 于军胜 +1 位作者 黄伟 曾红娟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期416-420,共5页
A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between ... A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface. 展开更多
关键词 organic field-effect transistor (OFET) MoOz buffer layer heterojunction structure con-tact resistance
在线阅读 下载PDF
Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
16
作者 Ru Han Hai-Chao Zhang +1 位作者 Dang-Hui Wang Cui Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期656-662,共7页
A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics ... A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics such as current-voltage relationships, energy band diagrams, band-to-band tunneling(BTBT) rate and the magnitude of the electric field are investigated by using TCAD simulation. It is found that compared with conventional TTFET and TTFET with gate-drain overlap(GDO) structure, GDS-TTFET not only has the minimum ambipolar current but also can suppress the ambipolar current under a more extensive bias range. Furthermore, the analog/RF performances of GDS-TTFET are also investigated in terms of transconductance, gate-source capacitance, gate-drain capacitance, cutoff frequency, and gain bandwidth production. By inserting a low-κ spacer layer between the gate electrode and the gate dielectric, the GDS structure can effectively reduce parasitic capacitances between the gate and the source/drain, which leads to better performance in term of cutoff frequency and gain bandwidth production. Finally, the thickness of the gate dielectric spacer is optimized for better ambipolar current suppression and improved analog/RF performance. 展开更多
关键词 tunneling field effect transistor T-SHAPED TUNNEL field-effect transistor gate dielectric SPACER ambipolar current analog/RF performance
在线阅读 下载PDF
Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature 被引量:1
17
作者 李柳暗 张家琦 +1 位作者 刘扬 敖金平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期445-447,共3页
In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process... In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs. 展开更多
关键词 metal-oxide-semiconductor heterostructure field-effect transistors low temperature ohmic pro-cess inductively coupled plasma
在线阅读 下载PDF
Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving 被引量:1
18
作者 Wei Wang Liang Wang +4 位作者 Gaole Dai Wei Deng Xiujuan Zhang Jiansheng Jie Xiaohong Zhang 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期193-203,共11页
Organic field-effect transistors(OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm^2V^(-1)s^(-1), demonstrating great potential for high-performance, l... Organic field-effect transistors(OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm^2V^(-1)s^(-1), demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene(BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene(TIPSPEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 9 10 cm^2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed.By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm^2V^(-1)s^(-1)(average mobility 1.2 cm^2V^(-1)s^(-1)) and 3.0 cm^2V^(-1)s^(-1)(average mobility2.0 cm^2V^(-1)s^(-1)), respectively. They both have a high on/off ratio(I_(on)/I_(off))>10~9. The performance can well satisfy the requirements for light-emitting diodes driving. 展开更多
关键词 Large-area growth Organic single-crystalline nanoribbon arrays Organic field-effect transistors light-emitting diodes driving
在线阅读 下载PDF
Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor 被引量:1
19
作者 蒋智 庄奕琪 +2 位作者 李聪 王萍 刘予琪 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期463-467,共5页
Trap-assisted tunneling(TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor(TFET). In this paper, we assess subthreshold perf... Trap-assisted tunneling(TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor(TFET). In this paper, we assess subthreshold performance of double gate TFET(DG-TFET) through a band-to-band tunneling(BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile(D_(it)) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. 展开更多
关键词 trap-assisted tunneling (TAT) tunnel field-effect transistors (TFETs) optical phonon scattering (OP) acoustic phonon scattering (AP)
在线阅读 下载PDF
Model and analysis of drain induced barrier lowering effect for 4H-SiC metal semiconductor field effect transistor
20
作者 曹全君 张义门 贾立新 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4456-4459,共4页
Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal... Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device. 展开更多
关键词 4H silicon carbide metal semiconductor field effect transistor drain induced barrierlowering effect short channel
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部