The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabric...The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film,confirming that its current switching ratio reaches up to 102.Because of the property of high light transmittance in ion-gel film,the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties.We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET)by the combination of GVFET and graphene OLED,analyzing its electrical and optical properties,and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage.展开更多
Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and ...Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.展开更多
In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and ...In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.展开更多
A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferr...A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102.展开更多
Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero...Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.展开更多
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi...Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire ...A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage(Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.展开更多
Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show ...Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V.s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxiai compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.展开更多
C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophe...C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently.展开更多
Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as a...Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.展开更多
We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mes...We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mesa height, are con- sidered and evaluated by numerical simulations. Based on the simulation result, normally-on and normally-off devices are fabricated. The fabricated device has a 12 μm thick drift layer with 8 × 10^15 cm^-3 N-type doping and 2.6 μm channel length. The normally-on device shows a 1.2 kV blocking capability with a minimum on-state resistance of 2.33 mΩ.cm2, while the normally-off device shows an on-state resistance of 3.85 mΩ.cm2. Both the on-state and the blocking performances of the device are close to the state-of-the-art values in this voltage range.展开更多
A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electri...A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.展开更多
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium G...The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.展开更多
A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between ...A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.展开更多
A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics ...A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics such as current-voltage relationships, energy band diagrams, band-to-band tunneling(BTBT) rate and the magnitude of the electric field are investigated by using TCAD simulation. It is found that compared with conventional TTFET and TTFET with gate-drain overlap(GDO) structure, GDS-TTFET not only has the minimum ambipolar current but also can suppress the ambipolar current under a more extensive bias range. Furthermore, the analog/RF performances of GDS-TTFET are also investigated in terms of transconductance, gate-source capacitance, gate-drain capacitance, cutoff frequency, and gain bandwidth production. By inserting a low-κ spacer layer between the gate electrode and the gate dielectric, the GDS structure can effectively reduce parasitic capacitances between the gate and the source/drain, which leads to better performance in term of cutoff frequency and gain bandwidth production. Finally, the thickness of the gate dielectric spacer is optimized for better ambipolar current suppression and improved analog/RF performance.展开更多
In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process...In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs.展开更多
Organic field-effect transistors(OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm^2V^(-1)s^(-1), demonstrating great potential for high-performance, l...Organic field-effect transistors(OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm^2V^(-1)s^(-1), demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene(BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene(TIPSPEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 9 10 cm^2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed.By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm^2V^(-1)s^(-1)(average mobility 1.2 cm^2V^(-1)s^(-1)) and 3.0 cm^2V^(-1)s^(-1)(average mobility2.0 cm^2V^(-1)s^(-1)), respectively. They both have a high on/off ratio(I_(on)/I_(off))>10~9. The performance can well satisfy the requirements for light-emitting diodes driving.展开更多
Trap-assisted tunneling(TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor(TFET). In this paper, we assess subthreshold perf...Trap-assisted tunneling(TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor(TFET). In this paper, we assess subthreshold performance of double gate TFET(DG-TFET) through a band-to-band tunneling(BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile(D_(it)) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current.展开更多
Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal...Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.31872901)the National Key Research and Development Program of China(Grant No.2016YFA0501602).
文摘The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film,confirming that its current switching ratio reaches up to 102.Because of the property of high light transmittance in ion-gel film,the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties.We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET)by the combination of GVFET and graphene OLED,analyzing its electrical and optical properties,and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774019,51572033,and 51572241)the Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602241)the China Postdoctoral Science Foundation(Grant No.2016M592754)
文摘In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.
基金supported by Center for BioNano Health-Guardfunded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as a Global Frontier Project (HGUARD_2013M3A6B2)
文摘A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102.
基金funded by Australian Research Council discovery project DP140103041Future Fellowship FT160100205
文摘Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
基金supported by the National Basic Research Program of China (Grant No. 2013CBA01600)the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154)+2 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028)
文摘Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
基金support by National High Technology Research and Development Program of China (No. 2011AA050504)the analysis supports from Instrumental Analysis Center of SJTU
文摘A vertical carbon nanotube field-effect transistor(CNTFET) based on silicon(Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube(SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage(Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00602)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011ZX02708-002)
文摘Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated, The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V.s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxiai compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.
基金supported by the National Science Foundation for Post-Doctoral Scientists of China (Grant No.20100471667)the Natural Science Foundation of Chongqing Science and Technology Commission (CQ CSTC) (Grant No.2011jjA40020)+1 种基金the National Natural Science Foundation of China (Grant Nos.60736005 and 61021061)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (Grant No.GGRYJJ08-05)
文摘C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently.
基金Project supported by the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant No.61574166)the National Basic Research Program of China(Grant No.2013CBA01604)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0201802)and the Beijing Training Project for the Leading Talents in S&T,China(Grant No.Z151100000315008)
文摘Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA050401)the National Science Fundfor Distinguished Young Scholars,China(Grant No.51225701)
文摘We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mesa height, are con- sidered and evaluated by numerical simulations. Based on the simulation result, normally-on and normally-off devices are fabricated. The fabricated device has a 12 μm thick drift layer with 8 × 10^15 cm^-3 N-type doping and 2.6 μm channel length. The normally-on device shows a 1.2 kV blocking capability with a minimum on-state resistance of 2.33 mΩ.cm2, while the normally-off device shows an on-state resistance of 3.85 mΩ.cm2. Both the on-state and the blocking performances of the device are close to the state-of-the-art values in this voltage range.
基金Project supported by the National Natural Science Foundation of China(Grant No.61404110)the National Higher-education Institution General Research and Development Project,China(Grant No.2682014CX097)
文摘A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.
文摘The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61071026 and 61177032)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.61021061)+1 种基金the Fundamental Research Fund for the Central Universities of Misistry of Education of China (Grant No.ZYGX2010Z004)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090185110020)
文摘A top-contact organic field-effect transistor (OFET) is fabricated by adopting a pentacene/1,11-bis(di-4- tolylaminophenyl) cyclohexane (TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode. The performances of the heterojunction OFET, including output current, field-effect mobility, and threshed voltage~ are all significantly improved by introducing the MoO3 thin buffer layer. The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer, thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61306116 and 61472322)
文摘A new T-shaped tunnel field-effect transistor(TTFET) with gate dielectric spacer(GDS) structure is proposed in this paper. To further studied the effects of GDS structure on the TTFET, detailed device characteristics such as current-voltage relationships, energy band diagrams, band-to-band tunneling(BTBT) rate and the magnitude of the electric field are investigated by using TCAD simulation. It is found that compared with conventional TTFET and TTFET with gate-drain overlap(GDO) structure, GDS-TTFET not only has the minimum ambipolar current but also can suppress the ambipolar current under a more extensive bias range. Furthermore, the analog/RF performances of GDS-TTFET are also investigated in terms of transconductance, gate-source capacitance, gate-drain capacitance, cutoff frequency, and gain bandwidth production. By inserting a low-κ spacer layer between the gate electrode and the gate dielectric, the GDS structure can effectively reduce parasitic capacitances between the gate and the source/drain, which leads to better performance in term of cutoff frequency and gain bandwidth production. Finally, the thickness of the gate dielectric spacer is optimized for better ambipolar current suppression and improved analog/RF performance.
基金Project supported by the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)
文摘In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs.
基金supported by the National Basic Research Program of China(2013CB933500)National Natural Science Foundation of China(Grant Nos.61422403,51672180,51622306,21673151)+2 种基金Qing Lan ProjectCollaborative Innovation Center of Suzhou Nano Science and Technology(NANO-CIC)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Organic field-effect transistors(OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm^2V^(-1)s^(-1), demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene(BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene(TIPSPEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 9 10 cm^2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed.By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm^2V^(-1)s^(-1)(average mobility 1.2 cm^2V^(-1)s^(-1)) and 3.0 cm^2V^(-1)s^(-1)(average mobility2.0 cm^2V^(-1)s^(-1)), respectively. They both have a high on/off ratio(I_(on)/I_(off))>10~9. The performance can well satisfy the requirements for light-emitting diodes driving.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574109 and 61204092)
文摘Trap-assisted tunneling(TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor(TFET). In this paper, we assess subthreshold performance of double gate TFET(DG-TFET) through a band-to-band tunneling(BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile(D_(it)) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current.
基金Project partly supported by National Defense Basic Research Program of China (Grant No 51327010101)
文摘Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.