期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
考虑环境因素的电动汽车充电站实时负荷预测模型 被引量:5
1
作者 李波 王宁 +1 位作者 吕叶林 陈宇 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期962-969,共8页
为了减少电动汽车大规模集成到电网造成的不利影响,提出了一种能够实现充电站充电负荷精准预测的方法。该方法利用LightGBM(light gradient boosting machine)与XGBoost(eXtreme gradient boosting)模型构建线下-线上组合模型。考虑充... 为了减少电动汽车大规模集成到电网造成的不利影响,提出了一种能够实现充电站充电负荷精准预测的方法。该方法利用LightGBM(light gradient boosting machine)与XGBoost(eXtreme gradient boosting)模型构建线下-线上组合模型。考虑充电负荷、时间、温度、天气等历史数据,利用LightGBM模型初步建立充电负荷线下预测模型;基于XGBoost模型,以线下预测模型输出负荷和实际负荷的误差为优化目标,实时变化的交通流量为协变量,建立线上预测模型,并对初步预测结果进行误差修正。某市实际充电站预测结果表明,相比于随机森林(RF)、LightGBM模型、XGBoost模型、多层感知机(MLP)以及LightGBM-RF组合模型,该组合模型具有更高的预测精度,同时可以准确预测不同充电站的实时充电负荷。 展开更多
关键词 电动汽车 充电负荷预测 lightGBM(light gradient boosting machine) XGBoost(eXtreme gradient boosting) 在线学习
在线阅读 下载PDF
基于机器学习的热带气旋灾害等级评估模型构建及其活动特征分析 被引量:3
2
作者 刘淑贤 张立生 +3 位作者 刘扬 王维国 杨琨 张源达 《气象》 CSCD 北大核心 2024年第3期331-343,共13页
在全球变暖的背景下,热带气旋(TC)作为影响我国最严重的自然灾害之一,其活动特征及灾害损失评估研究受到了广泛关注。采用组合赋权和k-means等方法,分析了2000年以来登陆我国的TC及灾害损失特征,并构建了基于机器学习的TC灾害等级评估... 在全球变暖的背景下,热带气旋(TC)作为影响我国最严重的自然灾害之一,其活动特征及灾害损失评估研究受到了广泛关注。采用组合赋权和k-means等方法,分析了2000年以来登陆我国的TC及灾害损失特征,并构建了基于机器学习的TC灾害等级评估模型。结果表明:从总体趋势来看,登陆我国的TC频数在逐年减少,但登陆风速的最大值却在缓慢增加;广东、浙江、福建、广西受灾较为严重,但整体上全国综合灾情指数呈下降趋势;与传统的随机森林、支持向量机、朴素贝叶斯算法相比,LightGBM(Light Gradient Boosting Machine)在TC灾害评估中效果最佳,准确率值为0.91,其中致灾因子是模型中最关键的因素,其次是防灾减灾能力、暴露度和脆弱性指标。 展开更多
关键词 热带气旋 灾害等级评估 机器学习 lightGBM(light gradient boosting machine)
在线阅读 下载PDF
Classification of aviation incident causes using LGBM with improved cross-validation 被引量:1
3
作者 NI Xiaomei WANG Huawei +1 位作者 CHEN Lingzi LIN Ruiguan 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期396-405,共10页
Aviation accidents are currently one of the leading causes of significant injuries and deaths worldwide. This entices researchers to investigate aircraft safety using data analysis approaches based on an advanced mach... Aviation accidents are currently one of the leading causes of significant injuries and deaths worldwide. This entices researchers to investigate aircraft safety using data analysis approaches based on an advanced machine learning algorithm.To assess aviation safety and identify the causes of incidents, a classification model with light gradient boosting machine (LGBM)based on the aviation safety reporting system (ASRS) has been developed. It is improved by k-fold cross-validation with hybrid sampling model (HSCV), which may boost classification performance and maintain data balance. The results show that employing the LGBM-HSCV model can significantly improve accuracy while alleviating data imbalance. Vertical comparison with other cross-validation (CV) methods and lateral comparison with different fold times comprise the comparative approach. Aside from the comparison, two further CV approaches based on the improved method in this study are discussed:one with a different sampling and folding order, and the other with more CV. According to the assessment indices with different methods, the LGBMHSCV model proposed here is effective at detecting incident causes. The improved model for imbalanced data categorization proposed may serve as a point of reference for similar data processing, and the model’s accurate identification of civil aviation incident causes can assist to improve civil aviation safety. 展开更多
关键词 aviation safety imbalance data light gradient boosting machine(LGBM) cross-validation(CV)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部