期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario,Canada 被引量:2
1
作者 Krish Homagain Chander Shahi +1 位作者 Nancy Luckai Mahadev Sharma 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第4期799-809,共11页
Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessmen... Biochar-based bioenergy production and sub- sequent land application of biochar can reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long period of time. A thorough life cycle assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario is conducted using SimaPro Ver. 8.1. The results of energy consumption and potential environmental impact of biochar-based bioenergy production system are compared with those of conventional coal-based system. Results show that biocbar land application consumes 4847.61 MJ per tonne dry feedstock more energy than conventional system, but reduces the GHG emissions by 68.19 kg CO2e per tonne of dry feed- stock in its life cycle. Biochar land application improves ecosystem quality by 18 %, reduces climate change by 15 %, and resource use by 13 % but may adversely impact on human health by increasing disability adjusted life years by 1.7 % if biomass availability is low to medium. Replacing fossil fuel with woody biomass has a positiveimpact on the environment, as one tonne of dry biomass feedstock when converted to biochar reduces up to 38 kg CO2e with biochar land application despite using more energy. These results will help understand a comprehensive picture of the new interventions in forestry businesses, which are promoting biochar-based bioenergy production. 展开更多
关键词 Woody biomass Carbon sequestration Environmental impact assessment Greenhouse gasemissions life cycle analysis Soil amendment
在线阅读 下载PDF
A review on plasma-based CO_(2) utilization:process considerations in the development of sustainable chemical production
2
作者 Sirui LI Giulia De FELICE +2 位作者 Simona EICHKORN Tao SHAO Fausto GALLUCCI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期1-16,共16页
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un... Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process. 展开更多
关键词 non-thermal plasma carbon capture and utilization process integration process intensification techno-economic analysis life cycle analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部