期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
改进的Libra区域卷积神经网络的脑动脉狭窄影像学检测算法 被引量:1
1
作者 刘汉卿 康晓东 +4 位作者 张福青 赵秀圆 杨靖怡 王笑天 李梦凡 《计算机应用》 CSCD 北大核心 2022年第9期2909-2916,共8页
针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-... 针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-CNN中以ResNet50为骨干网络,并分别在骨干网络的3、4、5阶段引入可变卷积网络(DCN),通过学习偏移量提取血管在不同断层面的形态特征;然后,将从骨干网络中提取的特征图输入至引入非局部神经网络(Non-localNN)的平衡特征金字塔(BFP)中进行更深度的特征融合;最后,将融合后的特征图输入至级联检测器,并通过提高交并比(IoU)阈值优化最终检测结果。实验结果表明,改进的LibraR-CNN检测算法相比Libra R-CNN算法,在脑动脉CTA数据集中平均准确率(AP)、AP_(50)、AP_(75)和AP_(S)分别提升了4.3、1.3、6.9和4.0个百分点;在公开的结肠息肉CT数据集中,AP、AP_(50)、AP_(75)和AP_(S)分别提升了6.6、3.6、13.0和6.4个百分点。通过在LibraR-CNN的骨干网络中加入DCN、Non-localNN和级联检测器,进一步融合特征从而学习脑动脉血管结构的语义信息,使得狭窄区域检测结果更精确,且改进算法在不同的检测任务中具有泛化能力。 展开更多
关键词 libra区域卷积神经网络 可变卷积网络 非局部神经网络 级联检测器 脑动脉狭窄
在线阅读 下载PDF
基于加权多层卷积神经网络模型的冬奥会场区滑坡易发性评价
2
作者 胡文杰 李峰 +1 位作者 张梅东 刘文龙 《工程地质学报》 北大核心 2025年第3期949-958,共10页
开展冬奥会地区滑坡易发性评价对于冬奥会场馆的运维风险管理具有重要意义。本文以冬奥会6个区县为研究对象,从地形地貌、地质构造、水文、人类活动和土壤植被5个方面构建冬奥会地区滑坡易发性评价指标体系,针对易发性因子权重需反复多... 开展冬奥会地区滑坡易发性评价对于冬奥会场馆的运维风险管理具有重要意义。本文以冬奥会6个区县为研究对象,从地形地貌、地质构造、水文、人类活动和土壤植被5个方面构建冬奥会地区滑坡易发性评价指标体系,针对易发性因子权重需反复多次调整的繁琐过程、过多的池化层造成特征信息大量丢失等问题,提出影响因子权重自适应学习、扩张卷积层替换池化层的加权多层卷积神经网络(Weighted Multi-CNN,WM-CNN)用于滑坡易发性预测。运用加权多层卷积神经网络、一维卷积神经网络(CNN-1D)、卷积神经网络(CNN)、支持向量机(SVM)、随机森林模型(RF)分别构建该区域的滑坡易发性评价模型。对冬奥会地区进行滑坡易发性区划,并通过受试者工作特征曲线(ROC)。结果表明,WM-CNN模型预测效果最好,高于CNN-1D模型的0.835、CNN模型的0.877、SVM模型的0.819、RF模型的0.884。此外,研究区域极高易发区和高易发区集中在北京的延庆区,大多分布在道路两侧和山谷地带。国家跳台滑雪中心和延庆奥运村位于中等易发区,滑坡风险较大,因此需要重点监控。 展开更多
关键词 冬奥会区域 加权多层 卷积神经网络 深度学习 滑坡易发性
在线阅读 下载PDF
基于融合卷积神经网络的车辆多目标检测方法
3
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:36
4
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
在线阅读 下载PDF
基于可变形卷积神经网络的遥感影像密集区域车辆检测方法 被引量:21
5
作者 高鑫 李慧 +5 位作者 张义 闫梦龙 张宗朔 孙显 孙皓 于泓峰 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2812-2819,共8页
车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上... 车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上述问题,该文提出基于端到端的神经网络模型DF-RCNN以提高车辆密集区域的检测精度。首先,在特征提取阶段,DF-RCNN模型将深浅层特征图的分辨率统一并融合;其次,DFRCNN模型结合可变形卷积和可变形感兴趣区池化模块,通过加入少量的参数和计算量以学习目标的几何形变。实验结果表明,该文提出的模型针对密集区域的车辆目标具有较好的检测性能。 展开更多
关键词 遥感影像 车辆检测 密集区域 端到端卷积神经网络
在线阅读 下载PDF
区域生长全卷积神经网络交互分割肝脏CT图像 被引量:6
6
作者 张丽娟 章润 +2 位作者 李东明 李阳 王晓坤 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1294-1304,共11页
由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。... 由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。首先对图像进行预处理,突出待分割肝脏区域;接着计算像素在不同边缘检测算子下的梯度值作为该像素的特征,形成像素特征向量训练网络该网络以一对像素特征向量为输入,以两像素的关联度系数为输出;然后将训练好的神经网络模型作为区域生长算法的生长准则,手动交互选取一点产生分割结果;最后将分割结果作为原图的交互信息和原图灰度通道连接在一起一同输入全卷积神经网络。实验结果表明平均Dice系数达到96.69%,像素准确率达到99.62%,平均交并比达到96.65%。不同的腹部CT图像序列中肝脏的分割结果表明,该方法能精确提取肝脏区域,满足临床应用的需求。 展开更多
关键词 卷积神经网络 区域生长法 交互式分割
在线阅读 下载PDF
基于改进区域卷积神经网络的安全帽佩戴检测 被引量:18
7
作者 徐守坤 王雅如 顾玉宛 《计算机工程与设计》 北大核心 2020年第5期1385-1389,共5页
针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在... 针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在线困难样本挖掘技术训练ROI网络,自动挑选出困难样本使训练更加有效。实验结果表明,相比原始的Faster RCNN算法,所提方法检测精度提高了4.73%,对部分遮挡和小尺寸目标均有较好的检测效果,对环境变化具有更强的适应性。 展开更多
关键词 安全帽佩戴检测 区域卷积神经网络 区域建议网络 多层卷积特征融合 在线困难样本挖掘
在线阅读 下载PDF
基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究 被引量:8
8
作者 刘凯 刘志刚 陈隽文 《铁道学报》 EI CAS CSCD 北大核心 2019年第7期43-49,共7页
针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特... 针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特点,通过Radon变换等预处理操作对承力索底座疑似裂纹区域精确定位,最后使用基于Beamlet变换的局部链搜索算法快速得到裂纹信息,实现承力索底座裂纹故障的可靠诊断。实验表明:该方法能在复杂的接触网支撑与悬挂装置图像中准确定位识别承力索底座裂纹故障,对拍摄距离、拍摄角度以及曝光度等因素具有很好的适应性,且具有较高的检测效率。 展开更多
关键词 高铁接触网 承力索底座 加速区域卷积神经网络 BEAMLET变换
在线阅读 下载PDF
基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测 被引量:32
9
作者 苟军年 杜愫愫 刘力 《电工技术学报》 EI CSCD 北大核心 2023年第1期47-59,共13页
由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标... 由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标特征保持性;其次,使用全局交并比(GIoU)计算目标间的相似度,提升定位准确性;最后,使用Tversky损失计算掩膜分支的损失,以提升不平衡样本下的检测效果。使用某输电运检中心无人机巡检作业所得具有自爆缺陷的绝缘子照片作为数据集对该模型进行验证,实验结果表明,与原始Mask R-CNN模型相比,该方法的平均精确率AP50:90、AP50和AP75分别提升至0.56、0.79和0.72;与三种经典目标检测算法相比,该算法具有较高的检测精度,模型的分割性能有一定提升,且比原始模型具有更好的鲁棒性,可以满足电力巡检中准确性和快速性的要求。 展开更多
关键词 绝缘子缺陷检测 掩膜区域卷积神经网络 卷积注意力模块 特征融合 全局交并比 Tversky损失
在线阅读 下载PDF
基于运动区域差分与卷积神经网络的动作识别 被引量:9
10
作者 陈晓春 林博溢 +1 位作者 孙乾 张坤华 《计算机工程》 CAS CSCD 北大核心 2019年第12期274-280,293,共8页
针对视频动作识别中数据处理效率不高的问题,建立一种基于视频帧间差分序列的动作识别模型。利用帧间差分检测视频帧中的运动区域,以该区域为中心进行相应的图像剪切和增强处理。整个识别模型采用双流架构,在数据样本制作时通过适当的... 针对视频动作识别中数据处理效率不高的问题,建立一种基于视频帧间差分序列的动作识别模型。利用帧间差分检测视频帧中的运动区域,以该区域为中心进行相应的图像剪切和增强处理。整个识别模型采用双流架构,在数据样本制作时通过适当的隔帧差分来扩大样本的时间跨度。采用分阶段逐步增加训练样本量的方法,以提升模型识别性能并解决训练过程中易出现的过拟合问题。实验结果表明,该模型可以在CPU级配置的电脑中完成快速动作识别,且在UCF11和UCF25数据集中的识别准确率均高于85%。 展开更多
关键词 帧间差分 动作识别 双流架构 卷积神经网络 运动区域
在线阅读 下载PDF
基于卷积神经网络快速区域标定的表面缺陷检测 被引量:25
11
作者 李宜汀 谢庆生 +2 位作者 黄海松 姚立国 魏琴 《计算机集成制造系统》 EI CSCD 北大核心 2019年第8期1897-1907,共11页
为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精... 为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精度。所提算法结合数据扩充方法增加了图像数量,通过划分K折交叉验证数据集改善了算法的鲁棒性;同时,将稀疏滤波思想融入卷积神经网络,提取双重深度特征作为FasterR-CNN的输入,提升了FasterR-CNN位置检测和识别的精度。通过油辣椒灌装生产线的封盖面典型缺陷检测验证了所提方法的可行性。 展开更多
关键词 表面缺陷检测 卷积神经网络快速区域标定 位置检测 稀疏滤波 生产过程监控
在线阅读 下载PDF
基于迁移学习深度卷积神经网络的配电网故障区域定位 被引量:48
12
作者 孟子超 杜文娟 王海风 《南方电网技术》 CSCD 北大核心 2019年第7期25-33,共9页
数据驱动方式作为解决配电网故障定位的新方法,由于配电网故障样本数量相对较少而受到限制。为此提出了一种基于迁移学习的深度卷积神经网络(CNN)故障区域定位方法,以解决深度学习中小样本下学习效果差的问题。首先,分析了迁移学习和CN... 数据驱动方式作为解决配电网故障定位的新方法,由于配电网故障样本数量相对较少而受到限制。为此提出了一种基于迁移学习的深度卷积神经网络(CNN)故障区域定位方法,以解决深度学习中小样本下学习效果差的问题。首先,分析了迁移学习和CNN的特点,论述了二者应用于配电网故障区域定位问题的可行性与优势。然后,利用ResNet50网络搭建了基于迁移学习的CNN模型。IEEE33节点配电网模型验证表明,所提方法仅利用两个测点的电压电流信息,在小样本情况下能迅速完成对故障区域的准确定位,且不易受过渡电阻、故障类型、噪声等因素影响。 展开更多
关键词 深度学习 迁移学习 卷积神经网络 配电网 故障区域定位
在线阅读 下载PDF
基于改进区域卷积神经网络的田间玉米叶部病害识别 被引量:18
13
作者 樊湘鹏 周建平 许燕 《华南农业大学学报》 CAS CSCD 北大核心 2020年第6期82-91,共10页
【目的】引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。【方法】在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1150幅,人工标注后对原始... 【目的】引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。【方法】在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。【结果】在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为0.9718,平均召回率为0.9719,F1为0.9718,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.0886,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。【结论】将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。 展开更多
关键词 玉米病害 复杂背景 数据增强 区域卷积神经网络 批归一化 混合损失函数
在线阅读 下载PDF
基于图像区域分割和卷积神经网络的电成像缝洞表征 被引量:9
14
作者 张浩 王亮 +3 位作者 司马立强 范玲 郭宇豪 郭一凡 《石油地球物理勘探》 EI CSCD 北大核心 2021年第4期698-706,735,I0007,I0008,共12页
电成像的处理、解释大量依赖人工操作,存在缝洞表征困难等问题。人工操作不但效率低,而且还存在难以消除的人为误差。为此,提出一种基于图像区域分割和卷积神经网络的电成像图像自动识别裂缝、溶蚀孔洞的方法。该方法基于电成像数据,结... 电成像的处理、解释大量依赖人工操作,存在缝洞表征困难等问题。人工操作不但效率低,而且还存在难以消除的人为误差。为此,提出一种基于图像区域分割和卷积神经网络的电成像图像自动识别裂缝、溶蚀孔洞的方法。该方法基于电成像数据,结合Otsu算法与平均法分割阈值,从地层背景中分离裂缝、溶蚀孔洞信息,并应用连通域像素标记法提取独立的连通域缝洞个体;然后,搭建并训练改进的LeNet-5网络模型,以多种地质构造的图像特征为标准制备训练样本集,实现缝洞特征的自动识别;最后,结合常规测井曲线,利用训练后模型的识别结果对图像分类,利用识别和提取的裂缝、溶蚀孔洞结果准确计算有效面孔率等定量评价参数。通过测试模型和实际数据的应用,验证了方法的适用性和合理性。相较于电成像的人工处理手段,该方法能够提高精度(避免人为误差)和处理速度(15s/m),训练模型针对测试集的预测准确率达97.8%,可为缝洞型储层的测井精细解释提供算法支撑。 展开更多
关键词 图像区域分割 卷积神经网络 电成像图像 裂缝 溶蚀孔洞
在线阅读 下载PDF
基于更快区域卷积神经网络的多视角船舶识别 被引量:5
15
作者 程静 王荣杰 +2 位作者 曾光淼 林安辉 王亦春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第10期1832-1840,共9页
针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区... 针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区域卷积神经网络模型对不同视角船舶的识别性能,并通过识别不同船舶的F1分数和误检率分析更快区域卷积神经网络对不同质量、背景图像的识别能力。实验结果表明,更快区域卷积神经网络识别多角度船舶的平均F1分数为0.6969,平均精度为92.88%,平均误检率为8.34%,即更快区域卷积神经网络对多视角船舶有较高的识别能力,但对于有雾或昏暗环境下的低像素图像识别能力明显下降。 展开更多
关键词 多视角 船舶识别 视觉图像 更快区域卷积神经网络 目标检测 特征提取 深度学习 低分辨率图像
在线阅读 下载PDF
基于区域卷积神经网络Faster R-CNN的手势识别方法 被引量:12
16
作者 张勋 陈亮 +1 位作者 朱雪婷 胡诚 《东华大学学报(自然科学版)》 CAS 北大核心 2019年第4期559-563,共5页
为提升手势识别算法的准确率,引入深度学习中区域卷积神经网络Faster R-CNN (faster region-convolution neural network)。利用该网络的卷积神经网络自动提取手势目标特征,采用RPN(region proposal networks)机制提取候选框以提高搜索... 为提升手势识别算法的准确率,引入深度学习中区域卷积神经网络Faster R-CNN (faster region-convolution neural network)。利用该网络的卷积神经网络自动提取手势目标特征,采用RPN(region proposal networks)机制提取候选框以提高搜索效率,采用Faster R-CNN网络对建议框做目标检测和分类以实现手势端到端的识别。结果表明,该方法能够更加准确高效地完成手势特征提取和分类任务,有效提高手势识别准确率。 展开更多
关键词 区域卷积神经网络 FASTER R-CNN 手势识别 深度学习
在线阅读 下载PDF
基于改进区域卷积神经网络的SAR图像船只检测方法 被引量:2
17
作者 石洪基 郎海涛 +3 位作者 宋棋 聂晓风 郭展宏 刘梦茜 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第S02期185-191,共7页
准确地掌握船只目标的位置和分布对海上交通管理、海洋事故救援及海洋环境保护等非常重要。近年来,合成孔径雷达(SAR)广泛应用到海上船只目标探测中。本文提出一种基于深度学习框架的船只检测方法,该方法根据SAR图像中船只目标的特点,... 准确地掌握船只目标的位置和分布对海上交通管理、海洋事故救援及海洋环境保护等非常重要。近年来,合成孔径雷达(SAR)广泛应用到海上船只目标探测中。本文提出一种基于深度学习框架的船只检测方法,该方法根据SAR图像中船只目标的特点,对区域卷积神经网络的输入部分及目标候选框提取部分做出了适应性改进,并对训练方法进行了优化。实验表明,本文提出的方法能够在不同分辨率的SAR图像中检测出密集分布、沿岸分布等不同场景下不同大小的船只目标,且检测结果不受旁瓣等噪声的干扰,能够完整地保留船只目标的细节信息,实现整体检测。 展开更多
关键词 船只目标检测 快速区域卷积神经网络 深度学习 合成孔径雷达
在线阅读 下载PDF
基于历史信息的区域卷积神经网络行人检测 被引量:1
18
作者 陆宝红 宋雪桦 《激光技术》 CAS CSCD 北大核心 2019年第5期660-665,共6页
为了解决卷积神经网络在进行连续行人检测时,检测行人速度较慢,达不到实时性要求的问题,采用基于历史信息的区域卷积神经网络行人检测算法,利用前一幅图像中的检测结果对当前图像的检测过程进行优化,将前一帧的检测结果作为对当前帧提... 为了解决卷积神经网络在进行连续行人检测时,检测行人速度较慢,达不到实时性要求的问题,采用基于历史信息的区域卷积神经网络行人检测算法,利用前一幅图像中的检测结果对当前图像的检测过程进行优化,将前一帧的检测结果作为对当前帧提取推荐区域的参考信息,并使用当前帧与前一帧的灰度值差异图对当前图像的卷积特征进行过滤,以缩小滑动窗口检测时的搜索区域。在加州理工学院行人检测数据集上进行了检测实验。结果表明,结合历史信息的算法与先进的算法相比检测速度提升了2.5倍,同时检测准确率提升了1.5%。该算法实现了实时行人检测,设计的网络能有效检测小目标行人。 展开更多
关键词 图像处理 连续行人检测 历史信息 区域卷积神经网络 区域推荐
在线阅读 下载PDF
基于卷积神经网络的候选区域优化算法 被引量:24
19
作者 王春哲 安军社 +1 位作者 姜秀杰 邢笑雪 《中国光学》 EI CAS CSCD 北大核心 2019年第6期1348-1361,共14页
在目标检测中,通常使用候选区域提高目标的检测效率。为解决当前候选区域质量较低的问题,本文将卷积边缘特征、显著性及目标位置信息引入到候选区域算法中。首先,利用卷积神经网络将待检测图像生成更富有语义信息的边缘特征,并通过边缘... 在目标检测中,通常使用候选区域提高目标的检测效率。为解决当前候选区域质量较低的问题,本文将卷积边缘特征、显著性及目标位置信息引入到候选区域算法中。首先,利用卷积神经网络将待检测图像生成更富有语义信息的边缘特征,并通过边缘点聚合及边缘组相似性策略,获取每个滑动窗口的边缘信息得分;其次,利用显著性目标的局部特征,统计每个滑动窗口中的目标显著性得分;第三,根据目标可能出现的位置,计算每个滑动窗口中的目标位置信息得分;最后,利用边缘信息、显著性及位置信息的分数确定候选区域。在PASCAL VOC 2007验证集上进行实验,给定10000个候选区域,交并比取0.7时,所提算法的召回率为90.50%,较Edge Boxes算法提高了3%。每张图像的运行时间大约为0.76 s。结果表明,本文算法可快速产生较高质量的候选区域。 展开更多
关键词 计算机视觉 目标检测 候选区域 卷积神经网络 显著性目标
在线阅读 下载PDF
基于改进掩码-区域卷积神经网络的混凝土病害实例分割 被引量:9
20
作者 黄彩萍 谢鑫 +1 位作者 周永康 李桂龙 《桥梁建设》 EI CSCD 北大核心 2023年第6期63-70,共8页
为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResN... 为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResNet101),加入路径聚合网络(PANet),以提高Mask-RCNN提取浅层特征信息的能力。为验证改进Mask-RCNN的识别精度及其在实际工程中的可行性,首先构建多类混凝土病害图像数据集,利用K-means聚类算法确定最适合该数据集的先验边界框的长宽比,然后对比改进Mask-RCNN与原始Mask-RCNN、其它主流深度学习网络对混凝土五类病害(裂缝、露筋、剥落、白皙和空洞)的识别结果;最后利用无人机采集到的钢筋混凝土桥梁病害图像作为测试集进行测试。结果表明:改进Mask-RCNN在提高计算速度的同时能更准确地定位病害,减少了误检和漏检,识别精度高于原始Mask-RCNN及其它深度学习网络;改进Mask-RCNN可以识别无人机拍摄的未经训练的新的混凝土病害图像,识别精度满足实际工程需求。 展开更多
关键词 桥梁工程 混凝土病害 深度学习 掩码-区域卷积神经网络 可移动网络 K-MEANS聚类算法 病害识别
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部