Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not onl...Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity.展开更多
Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,i...Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,its long-cycle and rate performance are significantly constrained by the low Na^(+)electronic conductivity of NVPOF.Furthermore,the prevalent self-discharge phenomenon restricts its applicability in practical applications.In this paper,the cathode material Na_(3)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(x=0.16)was synthesized by quantitatively introducing Fe^(3+)into the V-site of NVPOF.The introduction of Fe^(3+)significantly reduced the original bandgap and the energy barrier of NVPOF,as demonstrated through density functional theory calculations(DFT).When material x=0.16 is employed as the cathode material for the sodium-ion battery,the Na^(+)diffusion coefficient is significantly enhanced,exhibiting a lower activation energy of42.93 kJ mol^(-1).Consequently,material x=0.16 exhibits excellent electrochemical performance(rate capacity:57.32 mA h g^(-1)@10 C,cycling capacity:the specific capacity of 101.3 mA h g^(-1)can be stably maintained after 1000 cycles at 1 C current density).It can also achieve a full charge state in only2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests.In addition,the sodium storage mechanism associated with the three-phase transition of Na_(X)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(X=1,2,3)was elucidated by a series of experiments.In conclusion,this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials.展开更多
p-type transparent oxide semiconductors(TOSs)are significant in the semiconductor industry,driving advancements in optoelectronic technologies for transparent electronic devices with unique properties.The recent disco...p-type transparent oxide semiconductors(TOSs)are significant in the semiconductor industry,driving advancements in optoelectronic technologies for transparent electronic devices with unique properties.The recent discovery of p-type behavior in SeO_(2) has stimulated interest and confusion in the scientific community.In this Letter,we employ density functional theory calculations to reveal the intrinsic intrinsic insulating characteristics of SeO_(2) and highlight the substantial challenges in carrier doping.Our electronic structure analyses indicate that the Se 5^(2) states are energetically positioned too low to effectively interact with the O 2p orbitals,resulting in a valence band maximum(VBM)primarily dominated by the O 2p orbitals.The deep and localized nature of the VBM of SeO_(2) limits its potential as a high-mobility p-type TOS.Defect calculations demonstrate that all intrinsic defects in SeO_(2) exhibit deep transition levels within the bandgap.Regardless of the synthesis conditions,the Fermi level consistently resides in the mid-gap region.Furthermore,deep intrinsic acceptors and donors exhibit negative formation energies in the n-type and p-type regions,respectively,facilitating spontaneous formation and impeding external doping efforts.Thus,the reported p-type conductivity in SeO_(2) samples is unlikely to be intrinsic and is more plausibly attributable to reduced elemental Se,a well-known p-type semiconductor.展开更多
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are...Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.展开更多
Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-...Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-doped LLZO(LLZGO),which exhibits high ionic conductivity.However,the limited size of the Liþtransport bottleneck restricts its high-current discharging performance.The present study focuses on the synthesis of Ga^(3+)þand Ba^(2+)þco-doped LLZO(LLZGBO)and investigates the influence of doping contents on the morphology,crystal structure,Liþtransport bottleneck size,and ionic conductivity.In particular,Ga_(0.32)Ba_(0.15)exhibits the highest ionic conductivity(6.11E-2 S cm^(-1) at 550 C)in comparison with other compositions,which can be attributed to its higher-energy morphology,larger bottleneck and unique Liþtransport channel.In addition to Ba^(2+),Sr^(2+)þand Ca^(2+)have been co-doped with Ga3þinto LLZO,respectively,to study the effect of doping ion radius on crystal structures and the properties of electrolytes.The characterization results demonstrate that the easier Liþtransport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions.As a result,the assembled thermal battery with Ga_(0.32)Ba_(0.15)-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g^(-1) at an elevated temperature of 525℃.The discharge specific capacity of the thermal cell at 500 mA amounts to 63%of that at 100 mA,showcasing exceptional high-current discharging performance.When assembled as prototypes with fourteen single cells connected in series,the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm^(-2).These findings suggest that Ga,Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity,quick-initiating and high-current discharging thermal batteries.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-depositi...Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.展开更多
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros...Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.展开更多
The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells(PSCs).However,serious ion migration hampers their operational stability.Although dopants composed of varied...The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells(PSCs).However,serious ion migration hampers their operational stability.Although dopants composed of varied cations and anions are introduced into perovskite to suppress ion migration,the impact of cations or anions is not individually explored,which hinders the evaluation of different cations and further application of doping strategy.Here we report that a special group of sulfonic anions(like CF_(3)SO_(3)^(-))successfully introduce alkaline earth ions(like Ca^(2+))into perovskite lattice compared to its halide counterparts.Furthermore,with effective crystallization regulation and defect passivation of sulfonic anions,perovskite with Ca(CF_(3)SO_(3))_(2)shows reduced PbI2 residue and metallic Pb0 defects;thereby,corresponding PSCs show an enhanced PCE of 24.95%.Finally by comparing the properties of perovskite with Ca(CF_(3)SO_(3))_(2)and FACF_(3)SO_(3),we found that doped Ca^(2+)significantly suppressed halide migration with an activation energy of 1.246 eV which accounts for the improved operational stability of Ca(CF_(3)SO_(3))_(2-)doped PSCs,while no obvious impact of Ca^(2+)on trap density is observed.Combining the benefits of cations and anions,this study presents an effective method to decouple the effects of cations and anions and fabricate efficient and stable PSCs.展开更多
Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.Howe...Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.However,NTO suffers from unsatisfactory structural stability against cycling and poor electron conductivity.Herein,an isovalent doping strategy using Sn^(4+)to partially replace Ti^(4+)is demonstrated for improving the cycling stability and rate capability of NTO.The isovalent doping of Sn^(4+)does not alter the valence state of Ti^(4+),thus maintaining the lattice integrality and structural stability.Moreover,the Sn^(4+)dopant creates more Na^(+)-preferable travel channels and expands the interlayer spacing,thus increasing Na^(+)diffusivity.As a result,a Sn^(4+)-doped Na_(2)Ti_(3)O_7(NSTO)electrode exhibits a reversible Na^(+)storage specific capacity of 176 mA h g^(-1)at 0.1C and an ultra-long cycling life with 80.2%capacity retention after5000 cycles at 1C,far outperforming the undoped and aliovalent-doping NTO electrodes reported in the literature.In addition,the NSTO electrode delivers a rate capability of 102 mA h g^(-1)at 5C,higher than that of the NTO electrode(62 mA h g^(-1)).In situ X-ray diffraction characterization results reveal that Na^(+)storage in NSTO undergoes a partial solid-solution reaction mechanism,which is completely different from the two-phase transition mechanism of NTO.Density functional theory calculation results demonstrate that Sn^(4+)doping strengthens the Ti-O bond,contributing to structural stability.This work provides a robust approach to significantly improving the electrochemical performance of NTO-based anode materials for developing long-life NIBs.展开更多
The hybridization between oxygen 2p and transition-metal 3d states largely determines the electronic structure near the Fermi level and related functionalities of transition-metal oxides(TMOs).Considerable efforts hav...The hybridization between oxygen 2p and transition-metal 3d states largely determines the electronic structure near the Fermi level and related functionalities of transition-metal oxides(TMOs).Considerable efforts have been made to manipulate the p-d hybridization in TMOs by tailoring the spatial orbital overlap via structural engineering.Here,we demonstrate enhanced p-d hybridization in Ba^(2+)-doped LaNiO_(3)epitaxial films by simultaneously modifying both the spatial and energetic overlaps between the O-2p and Ni-3d orbitals.Combining x-ray absorption spectroscopy and firstprinciples calculations,we reveal that the enhanced hybridization stems from the synergistic effects of a reduced chargetransfer energy due to hole injection and an increased spatial orbital overlap due to straightening of Ni-O-Ni bonds.We further show that the enhanced p-d hybridization can be utilized to promote the oxygen evolution activity of LaNiO_(3).This work sheds new insights into the fine-tuning of the electronic structures of TMOs for enhanced functionalities.展开更多
Lithium argyrodites with high ionic conductivity and low cost are considered as one of the most prospective solid electrolytes for all-solid-state lithium batteries.However,the poor chemical stability and compatibilit...Lithium argyrodites with high ionic conductivity and low cost are considered as one of the most prospective solid electrolytes for all-solid-state lithium batteries.However,the poor chemical stability and compatibility with lithium metal limit their application.Herein,Li_(5.4)PS_(4.4)Cl1.4I0.2solid electrolyte with high ionic conductivity of 11.49 m S ccm^(-1)and improved chemical stability is synthesized by iodine doping.An ultra-thin Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane with thickness of 10μm can be obtained by wet coating process,exhibiting a high ionic conductivity of 2.09 mS ccm^(-1)and low areal resistance of 1.17Ωcm^(-2).Moreover,iodine doping could in-situ form LiI at the lithium/electrolyte interface and improve the critical current density of Li_(5.4)PS_(4.4)Cl_(1.6)from 0.8 to 1.35 mA cm^(-2).The resultant LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)/Li battery shows excellent cycling stability at 1 C,with a reversible specific capacity of 110.1 mA h g^(-1)and a retention of 80.5% after 1000 cycles.In addition,the assembled LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane/Li pouch cell delivers an initial discharge capacity of 110.4 mA h g^(-1)and 80.5% capacity retention after 100 cycles.展开更多
In pursuit of low cost and long life for lithium-ion batteries in electric vehicles,the most promising strategy is to replace the commercial LiCoO_(2)with a high-energy-density Ni-rich cathode.However,the irreversible...In pursuit of low cost and long life for lithium-ion batteries in electric vehicles,the most promising strategy is to replace the commercial LiCoO_(2)with a high-energy-density Ni-rich cathode.However,the irreversible redox couples induce rapid capacity decay,poor long-term cycling life,vast gas evolution,and unstable structure transformations of the Ni-rich cathode,limiting its practical applications.Element doping has been considered as the most promising strategy for addressing these issues.However,the relationships between element doping functions and redox chemistry still remain confused.To clarify this connection,this review places the dynamic evolution of redox couples(Li^(*),Ni^(2+)/Ni^(3+)/Ni^(4+)-e^(-),O^(2-)/O^(n-)/O_(2)-e^(-))as the tree trunk.The material structure,degradation mechanisms,and addressing element doping strategies are considered as the tree branches.This comprehensive summary aims to provide an overview of the current understanding and progress of Ni-rich cathode materials.In the last section,promising strategies based on element doping functions are provided to encourage the practical application of Ni-rich cathodes.These strategies also offer a new approach for the development of other intercalated electrode materials in Na and K-based battery systems.展开更多
Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effect...Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance.展开更多
Zn-N_(2)batteries,which are comprised of nitrogen reduction reaction(NRR)and oxygen evolution reaction(OER),represent an emerging technology for efficient ammonia production and simultaneous power generation.Neverthel...Zn-N_(2)batteries,which are comprised of nitrogen reduction reaction(NRR)and oxygen evolution reaction(OER),represent an emerging technology for efficient ammonia production and simultaneous power generation.Nevertheless,the intrinsic limitations of NRR and OER currently preclude its advancement.In this paper,Co and B co-doped Lavoisier framework series materials(MIL)are synthesized.Rapid mass transfer is rendered feasible with B_(0.25)-MIL-88-Fe_(4)Co_(1) by the distinctive double cone microrods structure.The addition of soft acid metal node Co^(2+)and B with defective electronic structure modifies the electronic configuration of MIL-88-Fe.At the same time,doping causes defects in the metal-organic frameworks,expands effectively the pore size,and increases the specific surface area,thereby expediting the adsorption of N_(2)and the release of O_(2).The electrocatalysis results show that the dual-doping scheme increases the NH_(3)yield(127.27μg^(-1)h^(-1)mg_(cat)^(-1))and Faraday efficiency(25.81%)while reducing the overpotential of OER(330 mV),achieving a power density of 8.30 mW cm^(-2)for Zn-N_(2)batteries.This discovery implements another avenue for the exploration of Zn-N_(2)battery materials and holds broader significance for advancing the field of energy storage and conversion.展开更多
Electrocatalytic conversion of renewable biomass is emerging as a promising route for sustainable chemical production;hence it urgently calls for developing efficient electrocatalysts with low potentials and high curr...Electrocatalytic conversion of renewable biomass is emerging as a promising route for sustainable chemical production;hence it urgently calls for developing efficient electrocatalysts with low potentials and high current densities.Herein,a Pr-doped Co(OH)_(2)hexagonal sheet(Pr/Co=1/9,in mole)is synthesized by electrodeposition as highly performant catalyst for 5-hydroxymethylfurfural(HMF)oxidation reaction(HMFOR)to produce 2,5-furandicarboxylic acid(FDCA).This novel and low-cost catalyst possesses a rather low onset potential of 1.05 V(vs.RHE)and requires only 1.10 V(vs.RHE)to reach a current density of 10 mA cm^(-2)for HMFOR,significantly outperforming Co(OH)_(2)benchmark(i.e.,210 mV higher to reach10 m A cm^(-2)).The origin of Pr promotion effect as well as the evolution of CoOOH catalytic sites and HMFOR process has been deeply elucidated by physical characterizations,kinetic experiments,in situ electrochemical techniques,and theoretical calculations.The unique Pr-ameliorated CoOOH active centers enable 100%conversion of HMF,99.6%selectivity of FDCA,and 99.7%Faraday efficiency,with a superior cycling durability toward HMFOR.This can be one of the most outstanding results for Co-based HMFOR catalysts to date in the literature.Thereby this work can help open up new horizons for constructing novel and efficient Co-based electrocatalysts by the utilization of lanthanide elements.展开更多
The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to...The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.展开更多
In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to sign...In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to significant environmental issues[1].Currently,sustainable biomass resources have attracted much attention as potential substitutes to fossil fuels for producing biofuels and commodity chemicals[2].展开更多
By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we rep...By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.展开更多
Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissoluti...Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissolution,irreversible phase transitions,and reduced structural stability during prolonged cycling at high voltage,which will significantly hinder their practical application.Herein,a Li4TeO5surface coating along with bulk Te-gradient doping strategy is proposed and developed to solve these issues for single-crystalline Ni-rich LiNi_(0.90)Co_(0.05)Mn_(0.05)O_(2)cathode(LTeO-1.0).It has been found that the bulk Te^(6+)gradient doping can lead to the formation of robust Te-O bonds that effectively inhibit H_(2)-H3 phase transformations and reinforce the lattice framework,and the in-situ Li4TeO5coating layer can act as a protective layer that suppresses the parasitic reactions and grain fragmentation.Besides,the modified material exhibits a higher Young's modulus,which will be conducive to maintaining significant structural and electrochemical stability under high-voltage conditions,Especially,the LTeO-1.0 electrode shows the improved Li^(+)diffusion kinetics and thermodynamic stability as well as high capacity retention of 95.83%and 82.12%after 200 cycles at the cut-off voltage of 4.3 and 4,5 V.Therefore,the efficacious dualmodification strategy will definitely contribute to enhancing the structural and electrochemical stability of single-crystalline Ni-rich cathodes and developing their application in LIBs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52372150,12088101,and 11991060)the National Key R&D Program of China(Grant No.2022YFB4200305)。
文摘Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity.
基金supported by the National Natural Science Foundation of China(22075227)the Shaanxi Fundamental Science Research Project for Chemistry and Biology(23JHQ011)。
文摘Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,its long-cycle and rate performance are significantly constrained by the low Na^(+)electronic conductivity of NVPOF.Furthermore,the prevalent self-discharge phenomenon restricts its applicability in practical applications.In this paper,the cathode material Na_(3)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(x=0.16)was synthesized by quantitatively introducing Fe^(3+)into the V-site of NVPOF.The introduction of Fe^(3+)significantly reduced the original bandgap and the energy barrier of NVPOF,as demonstrated through density functional theory calculations(DFT).When material x=0.16 is employed as the cathode material for the sodium-ion battery,the Na^(+)diffusion coefficient is significantly enhanced,exhibiting a lower activation energy of42.93 kJ mol^(-1).Consequently,material x=0.16 exhibits excellent electrochemical performance(rate capacity:57.32 mA h g^(-1)@10 C,cycling capacity:the specific capacity of 101.3 mA h g^(-1)can be stably maintained after 1000 cycles at 1 C current density).It can also achieve a full charge state in only2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests.In addition,the sodium storage mechanism associated with the three-phase transition of Na_(X)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(X=1,2,3)was elucidated by a series of experiments.In conclusion,this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials.
基金financially supported by the National Natural Science Foundation of China(Grant No.52372150)。
文摘p-type transparent oxide semiconductors(TOSs)are significant in the semiconductor industry,driving advancements in optoelectronic technologies for transparent electronic devices with unique properties.The recent discovery of p-type behavior in SeO_(2) has stimulated interest and confusion in the scientific community.In this Letter,we employ density functional theory calculations to reveal the intrinsic intrinsic insulating characteristics of SeO_(2) and highlight the substantial challenges in carrier doping.Our electronic structure analyses indicate that the Se 5^(2) states are energetically positioned too low to effectively interact with the O 2p orbitals,resulting in a valence band maximum(VBM)primarily dominated by the O 2p orbitals.The deep and localized nature of the VBM of SeO_(2) limits its potential as a high-mobility p-type TOS.Defect calculations demonstrate that all intrinsic defects in SeO_(2) exhibit deep transition levels within the bandgap.Regardless of the synthesis conditions,the Fermi level consistently resides in the mid-gap region.Furthermore,deep intrinsic acceptors and donors exhibit negative formation energies in the n-type and p-type regions,respectively,facilitating spontaneous formation and impeding external doping efforts.Thus,the reported p-type conductivity in SeO_(2) samples is unlikely to be intrinsic and is more plausibly attributable to reduced elemental Se,a well-known p-type semiconductor.
基金supported by the National Natural Science Foundation of China(62204074)the Hebei Natural Science Foundation(F2022201061,F2023201025)+2 种基金the Open bidding for selecting the best candidates of Baoding(2023chuang206)the High-level Talent Research Startup Project of Hebei University(521100221085)the Post-graduate's Innovation Fund Project of Hebei University(HBU2024BS030).
文摘Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.
基金the National Key R&D Program of China(No.2023YFC3009501)the National Natural Science Foundation of China(No.52374298)+1 种基金the project of State Key Laboratory of Explosion Science and Safety Protection(Beijing Institute of Technology,No.QNKT23-17)Aeronautical Science Foundation of China(No.20174072003).
文摘Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-doped LLZO(LLZGO),which exhibits high ionic conductivity.However,the limited size of the Liþtransport bottleneck restricts its high-current discharging performance.The present study focuses on the synthesis of Ga^(3+)þand Ba^(2+)þco-doped LLZO(LLZGBO)and investigates the influence of doping contents on the morphology,crystal structure,Liþtransport bottleneck size,and ionic conductivity.In particular,Ga_(0.32)Ba_(0.15)exhibits the highest ionic conductivity(6.11E-2 S cm^(-1) at 550 C)in comparison with other compositions,which can be attributed to its higher-energy morphology,larger bottleneck and unique Liþtransport channel.In addition to Ba^(2+),Sr^(2+)þand Ca^(2+)have been co-doped with Ga3þinto LLZO,respectively,to study the effect of doping ion radius on crystal structures and the properties of electrolytes.The characterization results demonstrate that the easier Liþtransport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions.As a result,the assembled thermal battery with Ga_(0.32)Ba_(0.15)-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g^(-1) at an elevated temperature of 525℃.The discharge specific capacity of the thermal cell at 500 mA amounts to 63%of that at 100 mA,showcasing exceptional high-current discharging performance.When assembled as prototypes with fourteen single cells connected in series,the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm^(-2).These findings suggest that Ga,Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity,quick-initiating and high-current discharging thermal batteries.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
基金financially supported by the Shandong Provincial Natural Science Foundation(ZR2023LFG005)the National Natural Science Foundation of China(Nos.22479161,52274308 and U22B20144)the Fundamental Research Funds for the Central Universities(No.24CX03012A)。
文摘Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.
基金National Natural Science Foundation of China (Nos. 42276035, 22309030)Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A1515012589,2020A1515110473)Key Plat Form Programs and Technology Innovation Team Project of Guangdong Provincial Department of Education (Nos. 2019GCZX002, 2020KCXTD011)。
文摘Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.
基金support from the National Key Research and Development Program of China(No.2022YFE0137400)the National Natural Science Foundation of China(Grant No.62274040).
文摘The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells(PSCs).However,serious ion migration hampers their operational stability.Although dopants composed of varied cations and anions are introduced into perovskite to suppress ion migration,the impact of cations or anions is not individually explored,which hinders the evaluation of different cations and further application of doping strategy.Here we report that a special group of sulfonic anions(like CF_(3)SO_(3)^(-))successfully introduce alkaline earth ions(like Ca^(2+))into perovskite lattice compared to its halide counterparts.Furthermore,with effective crystallization regulation and defect passivation of sulfonic anions,perovskite with Ca(CF_(3)SO_(3))_(2)shows reduced PbI2 residue and metallic Pb0 defects;thereby,corresponding PSCs show an enhanced PCE of 24.95%.Finally by comparing the properties of perovskite with Ca(CF_(3)SO_(3))_(2)and FACF_(3)SO_(3),we found that doped Ca^(2+)significantly suppressed halide migration with an activation energy of 1.246 eV which accounts for the improved operational stability of Ca(CF_(3)SO_(3))_(2-)doped PSCs,while no obvious impact of Ca^(2+)on trap density is observed.Combining the benefits of cations and anions,this study presents an effective method to decouple the effects of cations and anions and fabricate efficient and stable PSCs.
基金supported by the Natural Science Foundation of Shandong Province(ZR2022QB025 and ZR2021QF070)the Start-up Foundation of Qingdao University(DC2000005025)。
文摘Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.However,NTO suffers from unsatisfactory structural stability against cycling and poor electron conductivity.Herein,an isovalent doping strategy using Sn^(4+)to partially replace Ti^(4+)is demonstrated for improving the cycling stability and rate capability of NTO.The isovalent doping of Sn^(4+)does not alter the valence state of Ti^(4+),thus maintaining the lattice integrality and structural stability.Moreover,the Sn^(4+)dopant creates more Na^(+)-preferable travel channels and expands the interlayer spacing,thus increasing Na^(+)diffusivity.As a result,a Sn^(4+)-doped Na_(2)Ti_(3)O_7(NSTO)electrode exhibits a reversible Na^(+)storage specific capacity of 176 mA h g^(-1)at 0.1C and an ultra-long cycling life with 80.2%capacity retention after5000 cycles at 1C,far outperforming the undoped and aliovalent-doping NTO electrodes reported in the literature.In addition,the NSTO electrode delivers a rate capability of 102 mA h g^(-1)at 5C,higher than that of the NTO electrode(62 mA h g^(-1)).In situ X-ray diffraction characterization results reveal that Na^(+)storage in NSTO undergoes a partial solid-solution reaction mechanism,which is completely different from the two-phase transition mechanism of NTO.Density functional theory calculation results demonstrate that Sn^(4+)doping strengthens the Ti-O bond,contributing to structural stability.This work provides a robust approach to significantly improving the electrochemical performance of NTO-based anode materials for developing long-life NIBs.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1402902)the National Natural Science Foundation of China(Grant Nos.12374179,12074119,12374145,051B22001,12104157,12134003,and 12304218)the Shanghai Pujiang Program(Grant No.23PJ1402200).
文摘The hybridization between oxygen 2p and transition-metal 3d states largely determines the electronic structure near the Fermi level and related functionalities of transition-metal oxides(TMOs).Considerable efforts have been made to manipulate the p-d hybridization in TMOs by tailoring the spatial orbital overlap via structural engineering.Here,we demonstrate enhanced p-d hybridization in Ba^(2+)-doped LaNiO_(3)epitaxial films by simultaneously modifying both the spatial and energetic overlaps between the O-2p and Ni-3d orbitals.Combining x-ray absorption spectroscopy and firstprinciples calculations,we reveal that the enhanced hybridization stems from the synergistic effects of a reduced chargetransfer energy due to hole injection and an increased spatial orbital overlap due to straightening of Ni-O-Ni bonds.We further show that the enhanced p-d hybridization can be utilized to promote the oxygen evolution activity of LaNiO_(3).This work sheds new insights into the fine-tuning of the electronic structures of TMOs for enhanced functionalities.
基金National Key R&D Program of China (grant no. 2022YFB3807700)National Natural Science Foundation of China (Grant No. U1964205, U21A2075, 52172253,52102326, 52250610214, 22309194, 52372244)+4 种基金Ningbo S&T Innovation 2025 Major Special Programme (Grant No.2019B10044, 2021Z122, 2023Z106)Zhejiang Provincial Key R&D Program of China (Grant No. 2022C01072, 2024C01095)Jiangsu Provincial S&T Innovation Special Programme for carbon peak and carbon neutrality (Grant No. BE2022007)Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (LBMHD24E020001)Youth Innovation Promotion Association CAS (Y2021080)。
文摘Lithium argyrodites with high ionic conductivity and low cost are considered as one of the most prospective solid electrolytes for all-solid-state lithium batteries.However,the poor chemical stability and compatibility with lithium metal limit their application.Herein,Li_(5.4)PS_(4.4)Cl1.4I0.2solid electrolyte with high ionic conductivity of 11.49 m S ccm^(-1)and improved chemical stability is synthesized by iodine doping.An ultra-thin Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane with thickness of 10μm can be obtained by wet coating process,exhibiting a high ionic conductivity of 2.09 mS ccm^(-1)and low areal resistance of 1.17Ωcm^(-2).Moreover,iodine doping could in-situ form LiI at the lithium/electrolyte interface and improve the critical current density of Li_(5.4)PS_(4.4)Cl_(1.6)from 0.8 to 1.35 mA cm^(-2).The resultant LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)/Li battery shows excellent cycling stability at 1 C,with a reversible specific capacity of 110.1 mA h g^(-1)and a retention of 80.5% after 1000 cycles.In addition,the assembled LiCoO_(2)/Li_(5.4)PS_(4.4)Cl_(1.4)I_(0.2)membrane/Li pouch cell delivers an initial discharge capacity of 110.4 mA h g^(-1)and 80.5% capacity retention after 100 cycles.
基金supported by the National Natural Science Foundation of China(22209055)the China Postdoctoral Science Foundation(2022M721330)+2 种基金the Foshan Postdoctoral Science Foundation(X221081MS210)the Innovation Team of Universities of Guangdong Province(2022KCXTD030)the“Targeted Technology Innovation Initiative”Project at the Foshan National Institute of Innovation(JBGS2024002)。
文摘In pursuit of low cost and long life for lithium-ion batteries in electric vehicles,the most promising strategy is to replace the commercial LiCoO_(2)with a high-energy-density Ni-rich cathode.However,the irreversible redox couples induce rapid capacity decay,poor long-term cycling life,vast gas evolution,and unstable structure transformations of the Ni-rich cathode,limiting its practical applications.Element doping has been considered as the most promising strategy for addressing these issues.However,the relationships between element doping functions and redox chemistry still remain confused.To clarify this connection,this review places the dynamic evolution of redox couples(Li^(*),Ni^(2+)/Ni^(3+)/Ni^(4+)-e^(-),O^(2-)/O^(n-)/O_(2)-e^(-))as the tree trunk.The material structure,degradation mechanisms,and addressing element doping strategies are considered as the tree branches.This comprehensive summary aims to provide an overview of the current understanding and progress of Ni-rich cathode materials.In the last section,promising strategies based on element doping functions are provided to encourage the practical application of Ni-rich cathodes.These strategies also offer a new approach for the development of other intercalated electrode materials in Na and K-based battery systems.
基金National Key Research and Development Program of China (2022YFE0206300)National Natural Science Foundation of China (U21A2081,22075074, 22209047)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2024A1515011620)Hunan Provincial Natural Science Foundation of China (2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation (2023YCII0119)Student Innovation Training Program (S202410532594,S202410532357)。
文摘Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance.
基金supported by the Special Project for Local Science and Technology Development Guided by the Central Government of China(No.236Z1406G)。
文摘Zn-N_(2)batteries,which are comprised of nitrogen reduction reaction(NRR)and oxygen evolution reaction(OER),represent an emerging technology for efficient ammonia production and simultaneous power generation.Nevertheless,the intrinsic limitations of NRR and OER currently preclude its advancement.In this paper,Co and B co-doped Lavoisier framework series materials(MIL)are synthesized.Rapid mass transfer is rendered feasible with B_(0.25)-MIL-88-Fe_(4)Co_(1) by the distinctive double cone microrods structure.The addition of soft acid metal node Co^(2+)and B with defective electronic structure modifies the electronic configuration of MIL-88-Fe.At the same time,doping causes defects in the metal-organic frameworks,expands effectively the pore size,and increases the specific surface area,thereby expediting the adsorption of N_(2)and the release of O_(2).The electrocatalysis results show that the dual-doping scheme increases the NH_(3)yield(127.27μg^(-1)h^(-1)mg_(cat)^(-1))and Faraday efficiency(25.81%)while reducing the overpotential of OER(330 mV),achieving a power density of 8.30 mW cm^(-2)for Zn-N_(2)batteries.This discovery implements another avenue for the exploration of Zn-N_(2)battery materials and holds broader significance for advancing the field of energy storage and conversion.
基金National Natural Science Foundation of China(No.22272149,22062025)Yunnan University’s Research Innovation Fund for Graduate Students(No.KC-23234085)+1 种基金Workstation of Academician Chen Jing of Yunnan Province(No.202105AF150012)Free Exploration Fund for Academician(No.202405AA350001)。
文摘Electrocatalytic conversion of renewable biomass is emerging as a promising route for sustainable chemical production;hence it urgently calls for developing efficient electrocatalysts with low potentials and high current densities.Herein,a Pr-doped Co(OH)_(2)hexagonal sheet(Pr/Co=1/9,in mole)is synthesized by electrodeposition as highly performant catalyst for 5-hydroxymethylfurfural(HMF)oxidation reaction(HMFOR)to produce 2,5-furandicarboxylic acid(FDCA).This novel and low-cost catalyst possesses a rather low onset potential of 1.05 V(vs.RHE)and requires only 1.10 V(vs.RHE)to reach a current density of 10 mA cm^(-2)for HMFOR,significantly outperforming Co(OH)_(2)benchmark(i.e.,210 mV higher to reach10 m A cm^(-2)).The origin of Pr promotion effect as well as the evolution of CoOOH catalytic sites and HMFOR process has been deeply elucidated by physical characterizations,kinetic experiments,in situ electrochemical techniques,and theoretical calculations.The unique Pr-ameliorated CoOOH active centers enable 100%conversion of HMF,99.6%selectivity of FDCA,and 99.7%Faraday efficiency,with a superior cycling durability toward HMFOR.This can be one of the most outstanding results for Co-based HMFOR catalysts to date in the literature.Thereby this work can help open up new horizons for constructing novel and efficient Co-based electrocatalysts by the utilization of lanthanide elements.
基金support from the National Natural Science Foundation of China(U21A2093)Shaanxi Province Key Research and Development Plan Project(2023-YBGY-461)+4 种基金Platform of Science and Technology and Talent Team Plan of Guizhou province(GCC[2023]007)Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2025]Key 086)Fok Ying Tung Education Foundation(171095)financial support,Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2024094)。
文摘The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.
基金funded by the Master,PhD Scholarship Programme of Vingroup Innovation Foundation(VINIF),code VINIF.2024.TS.035funded by Vietnam National University,Ho Chi Minh City(VNUHCM)under grant number NCM2024-18-01。
文摘In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to significant environmental issues[1].Currently,sustainable biomass resources have attracted much attention as potential substitutes to fossil fuels for producing biofuels and commodity chemicals[2].
基金supported by the Fundamental Research Funds for the Central Universities(22120230104).
文摘By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.
基金supported by the National Natural Science Foundation of China(U19A2018)the Natural Science Foundation of Hunan Province(2021JJ30651)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20230643).
文摘Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissolution,irreversible phase transitions,and reduced structural stability during prolonged cycling at high voltage,which will significantly hinder their practical application.Herein,a Li4TeO5surface coating along with bulk Te-gradient doping strategy is proposed and developed to solve these issues for single-crystalline Ni-rich LiNi_(0.90)Co_(0.05)Mn_(0.05)O_(2)cathode(LTeO-1.0).It has been found that the bulk Te^(6+)gradient doping can lead to the formation of robust Te-O bonds that effectively inhibit H_(2)-H3 phase transformations and reinforce the lattice framework,and the in-situ Li4TeO5coating layer can act as a protective layer that suppresses the parasitic reactions and grain fragmentation.Besides,the modified material exhibits a higher Young's modulus,which will be conducive to maintaining significant structural and electrochemical stability under high-voltage conditions,Especially,the LTeO-1.0 electrode shows the improved Li^(+)diffusion kinetics and thermodynamic stability as well as high capacity retention of 95.83%and 82.12%after 200 cycles at the cut-off voltage of 4.3 and 4,5 V.Therefore,the efficacious dualmodification strategy will definitely contribute to enhancing the structural and electrochemical stability of single-crystalline Ni-rich cathodes and developing their application in LIBs.