In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake gra...Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management.展开更多
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme...The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization.展开更多
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr...Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.展开更多
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c...Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.展开更多
To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D...To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2.展开更多
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which t...An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0 450 ℃ is about 95%. The method is applicable in the given temperature range.展开更多
There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study,...There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study, the thermal conductivity values of heat transfer oil and TiO2 nano-oil in the above high temperature range were measured by a newly developed high-temperature thermal conductivity meter. Based on the principle of least square method, the thermal conductivity values obtained from experiments were fitted separately, and the correlation between thermal conductivity and temperature of heat transfer oil and TiO2 nano-oil was obtained. The results show that the thermal conductivity and the increased percentage of thermal conductivity of TiO2 nano-oil are proportional to the increase of particle size and mass fraction of nanoparticles, but thermal conductivity is in reverse proportion to the increase of temperature and the increased percentage of thermal conductivity is less affected by temperature.展开更多
The research and development of high-level radioactive waste(HLW)repository is a long-term systematic engineering project.Normally,it involves such stages as foundation study,site selection and assessment,underground ...The research and development of high-level radioactive waste(HLW)repository is a long-term systematic engineering project.Normally,it involves such stages as foundation study,site selection and assessment,underground research laboratory testing, and the design,construction,operation,and close of the repository.The key issue in repository design展开更多
Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is adde...Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is added to the solution before the chemical reduction reaction occurs.Firstly,it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene.Secondly,the Ag nano hexagonal platelets(AgNHPs)with small particle sizes(10 nm),narrow distribution and good dispersion are prepared.Especially,smaller sizes(10 nm)and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process.Finally,the conductivity of the ink is excellent.For example,when the printed patterns were sintering at 150℃,the resistivity of the ink(GE:0.15 g/L)reached the minimum value of 2.2×10^-6 cm.And the resistivity value was 3.7×10^-6Ωcm,when it was sintered at 100℃ for 30 min.The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.展开更多
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal...In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.展开更多
In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni...In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.展开更多
In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with p...In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.展开更多
Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of ...Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of crystal anisotropy, the THF hydrate was crushed to measure. In the test temperature value increases with the temperature increasing.展开更多
The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal condu...The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity.展开更多
The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management ...The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management materials.In this work,after the modification of polyimide(PI)fibers through oxidation and amination,the obtained PDA@OPI fibers(polydopamine(PDA)-modified pre-oxidized PI fibers)with abundant amino groups were mixed into graphene oxide(GO)to form uniform GO-PDA@OPI composites.Followed by evaporation,carbonization,graphitization and mechanical compaction,the G-gPDA@OPI films with a stable three-dimensional(3D)long-range interconnected covalent structure were built.In particular,due to the rich covalent bonds between GO layers and PDI@OPI fibers,the enhanced synergistic graphitization promotes an ordered graphitized structure with less interlayer distance between adjacent graphene sheets in composite film.As a result,the optimized G-gPDA@OPI film displays an improved tensile strength of 78.5 MPa,tensile strain of 19.4%and thermal conductivity of 1028 W/(m·K).Simultaneously,it also shows superior flexibility and high resilience.This work provides an easily-controlled and relatively low-cost route for fabricating multifunctional graphene heat dissipation films.展开更多
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
基金National Key Research and Development Program of China(2024YFB3714804)National Natural Science Foundation of China(52171277)+1 种基金Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LBMHZ24E020001)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SZ-TD006).
文摘Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management.
文摘The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22475179 and 22275173)。
文摘Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,21890750,U2032161,12147105)+8 种基金the USTC Research Funds of the Double First-Class Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600,2022YFA1203601,2022YFA1203602)the Natural Science Foundation of China-Anhui Joint Fund(U23A20121)the Outstanding Youth Foundation of Anhui Province(2208085J14)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Users with Excellence Project of Hefei Science Center CAS(2021HSC-UE004)the Fellowship of the China Postdoctoral Science Foundation(2022M710141)the open foundation of the Key Laboratory of the Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.
文摘To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
文摘An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0 450 ℃ is about 95%. The method is applicable in the given temperature range.
基金Project(51346007) supported by the National Natural Science Foundation of China
文摘There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study, the thermal conductivity values of heat transfer oil and TiO2 nano-oil in the above high temperature range were measured by a newly developed high-temperature thermal conductivity meter. Based on the principle of least square method, the thermal conductivity values obtained from experiments were fitted separately, and the correlation between thermal conductivity and temperature of heat transfer oil and TiO2 nano-oil was obtained. The results show that the thermal conductivity and the increased percentage of thermal conductivity of TiO2 nano-oil are proportional to the increase of particle size and mass fraction of nanoparticles, but thermal conductivity is in reverse proportion to the increase of temperature and the increased percentage of thermal conductivity is less affected by temperature.
文摘The research and development of high-level radioactive waste(HLW)repository is a long-term systematic engineering project.Normally,it involves such stages as foundation study,site selection and assessment,underground research laboratory testing, and the design,construction,operation,and close of the repository.The key issue in repository design
基金Project(2018GK4015)supported by the Hunan Provincial Strategic Emerging Industry Project,China
文摘Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is added to the solution before the chemical reduction reaction occurs.Firstly,it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene.Secondly,the Ag nano hexagonal platelets(AgNHPs)with small particle sizes(10 nm),narrow distribution and good dispersion are prepared.Especially,smaller sizes(10 nm)and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process.Finally,the conductivity of the ink is excellent.For example,when the printed patterns were sintering at 150℃,the resistivity of the ink(GE:0.15 g/L)reached the minimum value of 2.2×10^-6 cm.And the resistivity value was 3.7×10^-6Ωcm,when it was sintered at 100℃ for 30 min.The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.
基金Project(51172287)supported by the National Natural Science Foundation of ChinaProject(2012-2013)supported by the Laboratory Research Fund of the State Key Laboratory of Powder Metallurgy,China
文摘In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.
文摘In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.
基金Projects(51176029,50876020) supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B00) supported by the 12th Five-Year National Science and Technology Support Key Program of China Project(ybjj1124) supported by the Foundation of Graduate School of Southeast University,China
文摘In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.
文摘Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of crystal anisotropy, the THF hydrate was crushed to measure. In the test temperature value increases with the temperature increasing.
基金Project(201012200233)supported by the Freedom Explore Program of Central South University,China
文摘The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity.
基金Projects(51971089, 51872087) supported by the National Natural Science Foundation of ChinaProject(2020JJ5021)supported by the Natural Science Foundation of Hunan Province,ChinaProject(kq1804010) supported by the Major Science and Technology Program of Changsha,China。
文摘The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management materials.In this work,after the modification of polyimide(PI)fibers through oxidation and amination,the obtained PDA@OPI fibers(polydopamine(PDA)-modified pre-oxidized PI fibers)with abundant amino groups were mixed into graphene oxide(GO)to form uniform GO-PDA@OPI composites.Followed by evaporation,carbonization,graphitization and mechanical compaction,the G-gPDA@OPI films with a stable three-dimensional(3D)long-range interconnected covalent structure were built.In particular,due to the rich covalent bonds between GO layers and PDI@OPI fibers,the enhanced synergistic graphitization promotes an ordered graphitized structure with less interlayer distance between adjacent graphene sheets in composite film.As a result,the optimized G-gPDA@OPI film displays an improved tensile strength of 78.5 MPa,tensile strain of 19.4%and thermal conductivity of 1028 W/(m·K).Simultaneously,it also shows superior flexibility and high resilience.This work provides an easily-controlled and relatively low-cost route for fabricating multifunctional graphene heat dissipation films.