期刊文献+
共找到461篇文章
< 1 2 24 >
每页显示 20 50 100
基于遗传算法优化反向传播网络的汽车造型评价
1
作者 李彦龙 叶升飞 张娜 《同济大学学报(自然科学版)》 北大核心 2025年第5期786-792,共7页
针对汽车造型评价存在由于主观性高而导致可靠性低的问题,运用遗传算法原理对评价方法进行了优化。通过遗传算法的优化,基于反向传播(BP)神经网络的汽车造型评价,减小了评价误差。通过问卷调研构建数据集,使用汽车的18个评价对象作为输... 针对汽车造型评价存在由于主观性高而导致可靠性低的问题,运用遗传算法原理对评价方法进行了优化。通过遗传算法的优化,基于反向传播(BP)神经网络的汽车造型评价,减小了评价误差。通过问卷调研构建数据集,使用汽车的18个评价对象作为输入,整车评价作为输出,创建了融合遗传算法的反向传播(GA-BP)网络结构,并在Matlab中进行了仿真预测。研究结果表明,经过优化的BP神经网络预测值的相对误差均值由6.7%下降至1.7%,显著提升了汽车造型评价的可靠性,具有更好的预测能力和实际应用潜力。 展开更多
关键词 汽车造型评价 反向传播神经网络 遗传算法应用
在线阅读 下载PDF
改进鲸鱼算法构建反向传播神经网络粮食产量预测模型及效果分析
2
作者 赵晶晶 陈岩 《科学技术与工程》 北大核心 2025年第7期2748-2759,共12页
为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线... 为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线性惯性权重和最优邻域扰动策略改进鲸鱼优化算法,再将其最优解赋值给BP神经网络的权值和阈值,最终提高IWOA-BP的收敛速度和收敛精度。选取全国近45年粮食总产量和7种影响因素(有效灌溉面积、化肥施用量、农村用电量、农业机械总动力、粮食作物播种面积、受灾面积和农村人均消费支出)作为数据集,构建基于改进鲸鱼算法的反向传播神经网络粮食产量预测模型。多次实验表明,IWOA-BP模型在测试集上的表现均优于其他预测模型,包括长短期记忆网络(long short-term memory network,LSTM)预测模型、极限学习机(extreme learning machine,ELM)预测模型、基于鲸鱼优化算法的BP神经网络(WOA-BP)预测模型以及基于粒子群算法的BP神经网络(PSO-BP)预测模型。IWOA-BP模型和ELM模型相比,前者的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了77.12%、88.18%;和LSTM模型相比,前者的RMSE、MAPE分别降低了69.11%、47.36%;和WOA-BP模型相比,前者的平均绝对误差(mean absolute error,MAE)、RMSE和MAPE分别降低了43.78%、43.22%、45.96%。和PSO-BP模型相比,前者的MAE、RMSE、MAPE分别降低了89.67%、90.61%、90.82%。因此IWOA-BP预测模型的决定系数更高、预测误差更小且收敛速度更快,可有效地预测粮食产量,对于农业部门和相关政策制定者来说具有重要的技术参考价值。 展开更多
关键词 粮食产量 反向传播神经网络 鲸鱼优化算法 非线性惯性权重 随机扰动策略
在线阅读 下载PDF
一种用于数据流分类的递归反向传播算法
3
作者 刘展华 文益民 刘祥 《济南大学学报(自然科学版)》 北大核心 2025年第3期396-403,共8页
针对传统深度神经网络因数据流中发生概念漂移而出现分类准确率较低的问题,为了增强深度神经网络模型的学习能力,提出一种用于数据流分类的递归反向传播算法。该算法融合在线梯度下降算法的强大数据流学习能力与递归最小二乘法的快速收... 针对传统深度神经网络因数据流中发生概念漂移而出现分类准确率较低的问题,为了增强深度神经网络模型的学习能力,提出一种用于数据流分类的递归反向传播算法。该算法融合在线梯度下降算法的强大数据流学习能力与递归最小二乘法的快速收敛特性,当数据流发生概念漂移时,首先利用递归最小二乘法逐步训练神经网络模型,达到一个相对稳定的状态后切换至在线梯度下降算法,进一步训练深度神经网络模型,实现更深层次的数据流学习,优化深度神经网络模型的分类性能,并在多个人工数据集和真实数据集中实验验证所提算法的有效性。结果表明:所提算法具有优异的概念漂移适应能力,数据流分类准确率超越仅使用在线梯度下降算法或递归最小二乘法训练神经网络模型的多种算法。 展开更多
关键词 在线深度学习 在线梯度下降算法 递归最小二乘法 反向传播 深度神经网络 概念漂移
在线阅读 下载PDF
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:3
4
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺 被引量:1
5
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于反向传播-自适应提升算法的谐波阻抗估计 被引量:2
6
作者 夏焰坤 任俊杰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期118-125,共8页
目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、... 目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、电流测量数据,使用二元线性回归法估算系统谐波阻抗,并用小波包变换对测量数据进行分段,以找出系统谐波阻抗变动的时间;其次,采用反向传播-自适应提升算法精确量化每个采样数据段的系统谐波阻抗;最后,通过仿真与实例分析验证本文方法相较于其他方法具有更好的鲁棒性和精确性。 展开更多
关键词 系统侧谐波阻抗 小波包变换法 反向传播-自适应提升算法 鲁棒性
在线阅读 下载PDF
基于元模型的模糊Petri网反向传播学习算法 被引量:9
7
作者 汤新民 钟诗胜 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第14期3163-3165,3183,共4页
模糊Petri网是知识表达与并行推理的重要工具,但拓扑为非严格分层的结构。为在不增加虚节点的情况下实现模糊Petri网的反向传播学习,提出模糊Petri网元模型的概念,统一四种基本产生式规则对应的模糊Petri网模型。并建立元模型的结论置... 模糊Petri网是知识表达与并行推理的重要工具,但拓扑为非严格分层的结构。为在不增加虚节点的情况下实现模糊Petri网的反向传播学习,提出模糊Petri网元模型的概念,统一四种基本产生式规则对应的模糊Petri网模型。并建立元模型的结论置信度关于条件置信度的连续映射,给出了正向推理算法。为提高收敛速率,先通过基于回溯策略的反向推理算法,计算元模型结论置信度对条件置信度的梯度函数,最后采用Levenberg-Marquardt算法实现权值优化。 展开更多
关键词 模糊PETRI网 元模型 反向传播算法 levenberg-marquardt算法
在线阅读 下载PDF
前馈神经网络中的反向传播算法及其改进:进展与展望 被引量:52
8
作者 刘曙光 郑崇勋 刘明远 《计算机科学》 CSCD 北大核心 1996年第1期76-79,共4页
BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用悌度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和和发展过程,之后对BP算法固有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方... BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用悌度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和和发展过程,之后对BP算法固有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方法进行了全面综述,并指出了这一研究中的有关问题。 展开更多
关键词 神经网络 反向传播算法 前馈神经网络
在线阅读 下载PDF
基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型 被引量:17
9
作者 张玲 王玲 吴桐 《计算机应用》 CSCD 北大核心 2014年第3期775-779,共5页
针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传... 针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。 展开更多
关键词 热舒适度 预测 反向传播神经网络 粒子群优化算法 模型
在线阅读 下载PDF
适用于海量负荷数据分类的高性能反向传播神经网络算法 被引量:40
10
作者 刘洋 刘洋1 许立雄 《电力系统自动化》 EI CSCD 北大核心 2018年第21期96-103,共8页
负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网... 负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网络(BPNN)算法并行化,实现对海量负荷数据的高效分类。然后,通过对训练样本抽样分块以降低各网络学习时间,针对分布式后BPNN基分类器由于学习样本缺失潜在的准确度下降问题,采用集成学习予以改善。并通过BPNN学习不同训练样本块构建差异化基分类器,对基分类结果多数投票得到最终分类结果。另外,提供了一种基于K-means和K-medoids聚类的负荷数据训练样本选取方法。算例表明所提方法既能对负荷曲线有效分类,又能大幅提高海量数据的处理效率。 展开更多
关键词 负荷分类 Spark平台 反向传播神经网络 集成学习 聚类算法
在线阅读 下载PDF
基于多特征融合和分层反向传播增强算法的人体动作识别 被引量:6
11
作者 李拟珺 程旭 +1 位作者 郭海燕 吴镇扬 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期493-498,共6页
为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分... 为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分类增强算法扩展到多分类版本.此外,系统采用了包含预判决和后判决的分层识别框架,前者通过分析运动显著区域的位置,把动作粗分为几个子类,后者则利用额外的特征进一步提高识别准确率.基于Weizmann和KTH数据库的实验结果表明:神经网络相对于常用的支持向量机具有明显的优越性;结合分层识别的反向传播增强算法可以极大减少运算代价与动作类间的混淆,识别准确率较高. 展开更多
关键词 特征提取 动作识别 反向传播增强算法 神经网络 分层识别
在线阅读 下载PDF
一种改进的反向传播神经网络算法 被引量:4
12
作者 邱浩 王道波 张焕春 《应用科学学报》 CAS CSCD 2004年第3期384-387,共4页
在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通... 在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通过XOR问题的仿真证明了改进算法的有效性. 展开更多
关键词 反向传播 神经网络 误差 模式 传播 学习算法
在线阅读 下载PDF
基于反向传播算法神经网络的信用评分系统预测力研究 被引量:4
13
作者 朱晓明 程建 +1 位作者 刘治国 钟经樊 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第12期1405-1409,共5页
为了提高信用评分系统的预测准确性和稳定性,建立了基于反向传播(BP)算法神经网络的信用评分系统,并提出信用评分系统预测力和预测稳定性验证的新方法.结合信用评分问题的实际特点建立了模型并确定了参数,然后采用一种正向选入法确定输... 为了提高信用评分系统的预测准确性和稳定性,建立了基于反向传播(BP)算法神经网络的信用评分系统,并提出信用评分系统预测力和预测稳定性验证的新方法.结合信用评分问题的实际特点建立了模型并确定了参数,然后采用一种正向选入法确定输入变量,进行模型训练,并通过引入接收器操作特征曲线的分析理论、曲线面积(AUC)值及信息理论等评价方式,对所构造的神经网络信用评分系统预测力进行评价,最后利用自抽样法构造出多个验证样本来评估信用评分系统的稳定性.与传统的逻辑信用评分系统的比较结果表明,BP神经网络信用评分系统具有更高的预测准确性和稳定性,其AUC值平均提高0.036 7,AUC值的标准误差平均降低0.005. 展开更多
关键词 神经网络 反向传播算法 信用评分 曲线面积值
在线阅读 下载PDF
一种新的快速收敛的反向传播算法 被引量:8
14
作者 武妍 王守觉 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第8期1092-1095,共4页
提出了一种新的快速的误差反向传播算法 .这种方法从神经网络的权值调节公式入手 ,通过避免过早饱和、加大权值调节的幅度等手段来加快收敛 .并通过对两个奇偶问题、一个函数逼近问题的仿真 ,验证了所提出的算法的有效性 .结果表明 ,所... 提出了一种新的快速的误差反向传播算法 .这种方法从神经网络的权值调节公式入手 ,通过避免过早饱和、加大权值调节的幅度等手段来加快收敛 .并通过对两个奇偶问题、一个函数逼近问题的仿真 ,验证了所提出的算法的有效性 .结果表明 ,所提出的算法在收敛速度等方面大大优于通常的BP(反向传播 )算法、带动量项的BP算法以及其他的一些改进的算法 . 展开更多
关键词 神经网络 反向传播 学习算法
在线阅读 下载PDF
应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果 被引量:6
15
作者 冯国红 朱玉杰 +1 位作者 徐华东 蒋天宁 《东北林业大学学报》 CAS CSCD 北大核心 2020年第6期56-60,共5页
以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传... 以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传播(BP)神经网络输入量,测试了BP神经网络识别两种树种的效果。结果表明:寻优前,获得高识别率的主成分区间较窄,仅有5种情况识别效果理想,此种情况不利于主成分数的恰当选择;寻优后,获得高识别率的主成分区间较宽,从前6到前17有12种情况可供选择,此种情况更利于主成分的合理选择;寻优后的识别率比寻优前高,且稳定性较好。利用近红外光谱,依据GA-PCA-BP神经网络方法识别树种是一种理想的方法。 展开更多
关键词 树种识别 近红外光谱 遗传算法 主成分分析 反向传播神经网络
在线阅读 下载PDF
FNN上的反向传播学习算法 被引量:2
16
作者 毛国君 宋广军 杨名生 《计算机应用与软件》 CSCD 1998年第4期34-38,共5页
近几年来,模糊神经网络(FNN)的研究引起了广泛的注意。本文对FNN上的反向传播学习方法加以讨论。使用输入均值和输出权重参量来进行模糊化和反模糊化处理,学习的目的是调整这两个参量到合适的值。
关键词 模糊神经网络 反向传播学习 算法
在线阅读 下载PDF
基于卷积神经网络的反向传播算法改进 被引量:25
17
作者 杨鹤标 龚文彦 《计算机工程与设计》 北大核心 2019年第1期126-130,共5页
在真实音识别系统中,针对卷积神经网络的超大规模模型参数和海量训练数据导致的训练效率问题,提出一种缩小权值范围反向传播(NWBP)算法,围绕网络参数训练后期寻找误差极小值时易出现的振荡现象,采用K-MEANS算法获取逼近误差极小值的种... 在真实音识别系统中,针对卷积神经网络的超大规模模型参数和海量训练数据导致的训练效率问题,提出一种缩小权值范围反向传播(NWBP)算法,围绕网络参数训练后期寻找误差极小值时易出现的振荡现象,采用K-MEANS算法获取逼近误差极小值的种子节点,通过迭代计算过程缩小权值变化范围避免振荡现象,使训练结果的网络误差收敛,提高训练效率。通过仿真实验,NWBP算法在复杂卷积神经网络的权值训练过程中相比可变学习速率反向传播算法收敛效果得到提升,一定程度上减少了冗余计算,缩短了训练时间,算法效果相比在简单网络中更显著。 展开更多
关键词 反向传播算法 卷积神经网络 语音识别 训练效率 振荡现象
在线阅读 下载PDF
关于系统级故障诊断的烟花-反向传播神经网络算法 被引量:5
18
作者 归伟夏 陆倩 苏美力 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1102-1109,共8页
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略... 为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。 展开更多
关键词 系统级故障诊断 烟花算法 反向传播神经网络 PMC模型 烟花-反向传播神经网络算法
在线阅读 下载PDF
综合反向传播算法 被引量:1
19
作者 王科俊 金鸿章 李国斌 《控制理论与应用》 EI CAS CSCD 北大核心 1999年第5期739-743,共5页
提出一种用于多层前向神经网络的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习... 提出一种用于多层前向神经网络的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习过程中不平衡现象的能力.对比实验表明该算法有比基本BP算法快得多的收敛速度,并能取得全局最优解. 展开更多
关键词 神经网络 学习算法 反向传播算法
在线阅读 下载PDF
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术 被引量:1
20
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 K-means算法 反向传播神经网络
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部