期刊文献+
共找到3,481篇文章
< 1 2 175 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions
2
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
3
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:25
4
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
在线阅读 下载PDF
Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning 被引量:2
5
作者 Xi Zhi-fei Kou Ying-xin +4 位作者 Li Zhan-wu Lv Yue Xu An Li You Li Shuang-qing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期187-206,共20页
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta... Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets. 展开更多
关键词 Maneuver trajectory prediction Volterra series Transfer learning Online learning Ensemble learning Robust regularization
在线阅读 下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
6
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
在线阅读 下载PDF
A Framework of LSTM Neural Network Model in Multi-Time Scale Real-Time Prediction of Ship Motions in Head Waves 被引量:1
7
作者 CHEN Zhan-yang ZHAN Zheng-yong +2 位作者 CHANG Shao-ping XU Shao-feng LIU Xing-yun 《船舶力学》 EI CSCD 北大核心 2024年第12期1803-1819,共17页
Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive act... Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions. 展开更多
关键词 deep learning LSTM ship motion real-time prediction irregular waves
在线阅读 下载PDF
2D multi-model general predictive iterative learning control for semi-batch reactor with multiple reactions 被引量:2
8
作者 BO Cui-mei YANG Lei +2 位作者 HUANG Qing-qing LI Jun GAO Fu-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2613-2623,共11页
Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterativ... Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterative learning control(2D-MGPILC) strategy based on the multi-model with time-varying weights was introduced for optimizing the tracking performance of desired temperature profile. This strategy was modeled based on an iterative learning control(ILC) algorithm for a 2D system and designed in the generalized predictive control(GPC) framework. Firstly, a multi-model structure with time-varying weights was developed to describe the complex operation of a general semi-batch reactor. Secondly, the 2 D-MGPILC algorithm was proposed to optimize simultaneously the dynamic performance along the time and batch axes. Finally, simulation for the controller design of a semi-batch reactor with multiple reactions was involved to demonstrate that the satisfactory performance could be achieved despite of the repetitive or non-repetitive disturbances. 展开更多
关键词 two-dimensional system iterative learning CONTROL GENERAL predictIVE CONTROL semi-batch REACTOR
在线阅读 下载PDF
Supervisory control of the hybrid off-highway vehicle for fuel economy improvement using predictive double Q-learning with backup models 被引量:1
9
作者 SHUAI Bin LI Yan-fei +2 位作者 ZHOU Quan XU Hong-ming SHUAI Shi-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2266-2278,共13页
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi... This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme. 展开更多
关键词 supervisory charge-sustaining control hybrid electric vehicle reinforcement learning predictive double Q-learning
在线阅读 下载PDF
Markov链与Q-Learning算法的超轻度混动汽车模型预测控制 被引量:4
10
作者 尹燕莉 马永娟 +5 位作者 周亚伟 王瑞鑫 詹森 马什鹏 黄学江 张鑫新 《汽车安全与节能学报》 CAS CSCD 北大核心 2021年第4期557-569,共13页
为了同时兼顾能量管理策略的全局最优性与运算实时性,本文提出了基于Markov链与Q-Learning算法的超轻度混合动力汽车模型预测控制能量管理策略。采用多步Markov模型预测加速度变化过程,计算得出混合动力汽车未来需求功率;以等效燃油消... 为了同时兼顾能量管理策略的全局最优性与运算实时性,本文提出了基于Markov链与Q-Learning算法的超轻度混合动力汽车模型预测控制能量管理策略。采用多步Markov模型预测加速度变化过程,计算得出混合动力汽车未来需求功率;以等效燃油消耗最小与动力电池荷电状态(SOC)局部平衡为目标函数,建立能量管理策略优化模型;采用Q-Learning算法对预测时域内的优化问题进行求解,得到最优转矩分配序列。基于MATLAB/Simulink平台,对于ECE_EUDC+UDDS循环工况进行仿真分析。结果表明:采用Q-Learning求解的控制策略比基于动态规划(DP)求解的控制策略,在保证燃油经济性基本保持一致的前提下,仿真时间缩短了4 s,明显地提高了运行效率,实时性更好。 展开更多
关键词 超轻度混合动力汽车 模型预测控制 Markov链(Markov chain) Q-learning算法 多步Markov模型 能量管理
在线阅读 下载PDF
Damage prediction of rear plate in Whipple shields based on machine learning method
11
作者 Chenyang Wu Xiangbiao Liao +1 位作者 Lvtan Chen Xiaowei Chen 《Defence Technology(防务技术)》 2025年第8期52-68,共17页
A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,wh... A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements. 展开更多
关键词 Damage prediction of rear plate Cumulative effect of debris cloud Whipple shield Machine learning Random forest
在线阅读 下载PDF
Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques 被引量:30
12
作者 WANG Shi-ming ZHOU Jian +3 位作者 LI Chuan-qi Danial Jahed ARMAGHANI LI Xi-bing Hani SMITRI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期527-542,共16页
Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ... Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods. 展开更多
关键词 ROCKBURST hard rock prediction BAGGING BOOSTING ensemble learning
在线阅读 下载PDF
Machine learning strategies for lithostratigraphic classification based on geochemical sampling data: A case study in area of Chahanwusu River, Qinghai Province, China 被引量:7
13
作者 ZHANG Bao-yi LI Man-yi +4 位作者 LI Wei-xia JIANG Zheng-wen Umair KHAN WANG Li-fang WANG Fan-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1422-1447,共26页
Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four mach... Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification. 展开更多
关键词 machine learning geochemical sampling lithostratigraphic classification lithostratigraphic prediction BEDROCK
在线阅读 下载PDF
Time series online prediction algorithm based on least squares support vector machine 被引量:8
14
作者 吴琼 刘文颖 杨以涵 《Journal of Central South University of Technology》 EI 2007年第3期442-446,共5页
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal... Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction. 展开更多
关键词 time series prediction machine learning support vector machine statistical learning theory
在线阅读 下载PDF
Short-term travel flow prediction method based on FCM-clustering and ELM 被引量:2
15
作者 WANG Xing-chao HU Jian-ming +1 位作者 LIANG Wei ZHANG Yi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1344-1350,共7页
Short-term travel flow prediction has been the core of the intelligent transport systems(ITS). An advanced method based on fuzzy C-means(FCM) and extreme learning machine(ELM) has been discussed by analyzing predictio... Short-term travel flow prediction has been the core of the intelligent transport systems(ITS). An advanced method based on fuzzy C-means(FCM) and extreme learning machine(ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function, this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms. 展开更多
关键词 intelligent transportation systems (ITS) TRAVEL flow prediction extreme learning machine (ELM) FCM-clustering SPATIO-TEMPORAL relation
在线阅读 下载PDF
DP-BPR:Destination prediction based on Bayesian personalized ranking 被引量:3
16
作者 JIANG Feng LU Zhen-ni +1 位作者 GAO Min LUO Da-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期494-506,共13页
Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based ... Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based on driving trajectory of vehicles to predict the destinations,which is challenging to achieve the early destination prediction.To this end,we propose a model of early destination prediction,DP-BPR,to predict the destinations by users’travel time and locations.There are three challenges to accomplish the model:1)the extremely sparse historical data make it challenge to predict destinations directly from raw historical data;2)the destinations are related to not only departure points but also departure time so that both of them should be taken into consideration in prediction;3)how to learn destination preferences from historical data.To deal with these challenges,we map sparse high-dimensional data to a dense low-dimensional space through embedding learning using deep neural networks.We learn the embeddings not only for users but also for locations and time under the supervision of historical data,and then use Bayesian personalized ranking(BPR)to learn to rank destinations.Experimental results on the Zebra dataset show the effectiveness of DP-BPR. 展开更多
关键词 destination prediction embedding learning top-N prediction Bayesian personalized ranking
在线阅读 下载PDF
Impact point prediction guidance of ballistic missile in high maneuver penetration condition 被引量:4
17
作者 Yong Xian Le-liang Ren +3 位作者 Ya-jie Xu Shao-peng Li Wei Wu Da-qiao Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期213-230,共18页
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje... An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value. 展开更多
关键词 Ballistic missile High maneuver penetration Impact point prediction Supervised learning Online guidance Activation function
在线阅读 下载PDF
An improved brain emotional learning algorithm for accurate and efficient data analysis 被引量:1
18
作者 梅英 谭冠政 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1084-1098,共15页
To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introdu... To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications. 展开更多
关键词 prediction CLASSIFICATION brain emotional learning genetic algorithm
在线阅读 下载PDF
Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites
19
作者 S.Gupta T.Mukhopadhyay V.Kushvaha 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期58-82,共25页
The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships.Fiber-reinforced polymer composites have eme... The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships.Fiber-reinforced polymer composites have emerged as an integral part of materials development with tailored mechanical properties.However,the complexity and heterogeneity of such composites make it considerably more challenging to have precise quantification of properties and attain an optimal design of structures through experimental and computational approaches.In order to avoid the complex,cumbersome,and labor-intensive experimental and numerical modeling approaches,a machine learning(ML)model is proposed here such that it takes the microstructural image as input with a different range of Young’s modulus of carbon fibers and neat epoxy,and obtains output as visualization of the stress component S11(principal stress in the x-direction).For obtaining the training data of the ML model,a short carbon fiberfilled specimen under quasi-static tension is modeled based on 2D Representative Area Element(RAE)using finite element analysis.The composite is inclusive of short carbon fibers with an aspect ratio of 7.5that are infilled in the epoxy systems at various random orientations and positions generated using the Simple Sequential Inhibition(SSI)process.The study reveals that the pix2pix deep learning Convolutional Neural Network(CNN)model is robust enough to predict the stress fields in the composite for a given arrangement of short fibers filled in epoxy over the specified range of Young’s modulus with high accuracy.The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a majority of the samples in the design spectrum,indicating excellent prediction capability.In this paper,we have focused on the stage-wise chronological development of the CNN model with optimized performance for predicting the full-field stress maps of the fiber-reinforced composite specimens.The development of such a robust and efficient algorithm would significantly reduce the amount of time and cost required to study and design new composite materials through the elimination of numerical inputs by direct microstructural images. 展开更多
关键词 Micromechanics of fiber-reinforced composites Machine learning assisted stress prediction Microstructural image-based machine learning CNN based stress analysis
在线阅读 下载PDF
Parallel solving model for quantified boolean formula based on machine learning
20
作者 李涛 肖南峰 《Journal of Central South University》 SCIE EI CAS 2013年第11期3156-3165,共10页
A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance ... A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system. 展开更多
关键词 machine learning quantified boolean formula parallel solving knowledge sharing feature extraction performance prediction
在线阅读 下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部