期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Research on Transfer Learning in Surface Defect Detection of Printed Products 被引量:1
1
作者 ZHU Xin-yu SI Zhan-jun CHEN Zhi-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期38-44,共7页
To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and tr... To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and transfer learning-based method for printing defect detection was proposed in this study.This method enabled defect detection in printed surface without the need for extensive labeled defect.The ResNet101-SSTU model was used in this study.On the public dataset of printing defect images,the ResNet101-SSTU model not only achieves comparable performance and speed to mainstream supervised learning detection models but also successfully addresses some of the detection challenges encountered in supervised learning.The proposed ResNet101-SSTU model effectively eliminates the need for extensive defect samples and labeled data in training,providing an efficient solution for quality inspection in the printing industry. 展开更多
关键词 transfer learning UNSUPERVISED Defect detection PRINTING
在线阅读 下载PDF
Improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning
2
作者 ZHANG Wen-gang LIU Song-lin +3 位作者 WANG Lu-qi SUN Wei-xin ZHANG Yan-mei NIE Wen 《Journal of Central South University》 CSCD 2024年第11期3823-3837,共15页
Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarci... Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances. 展开更多
关键词 data-limited cases transfer learning landslide susceptibility machine learning normalization based on the parameters of the source domain
在线阅读 下载PDF
Maneuvering target tracking of UAV based on MN-DDPG and transfer learning 被引量:17
3
作者 Bo Li Zhi-peng Yang +2 位作者 Da-qing Chen Shi-yang Liang Hao Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期457-466,共10页
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble... Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments. 展开更多
关键词 UAVS Maneuvering target tracking Deep reinforcement learning MN-DDPG Mixed noises transfer learning
在线阅读 下载PDF
Range estimation of few-shot underwater sound source in shallow water based on transfer learning and residual CNN 被引量:4
4
作者 YAO Qihai WANG Yong YANG Yixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期839-850,共12页
Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in ... Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods. 展开更多
关键词 transfer learning residual convolutional neural network(CNN) few shot vertical array range estimation
在线阅读 下载PDF
Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning 被引量:2
5
作者 Xi Zhi-fei Kou Ying-xin +4 位作者 Li Zhan-wu Lv Yue Xu An Li You Li Shuang-qing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期187-206,共20页
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta... Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets. 展开更多
关键词 Maneuver trajectory prediction Volterra series transfer learning Online learning Ensemble learning Robust regularization
在线阅读 下载PDF
Autonomous landing scene recognition based on transfer learning for drones 被引量:2
6
作者 DU Hao WANG Wei +1 位作者 WANG Xuerao WANG Yuanda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期28-35,共8页
In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same sc... In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same scene has different representations in different altitudes, we employ a deep convolutional neural network(CNN) based on knowledge transfer and fine-tuning to solve the problem. Then, LandingScenes-7 dataset is established and divided into seven classes. Moreover, there is still a novelty detection problem in the classifier, and we address this by excluding other landing scenes using the approach of thresholding in the prediction stage. We employ the transfer learning method based on ResNeXt-50 backbone with the adaptive momentum(ADAM) optimization algorithm. We also compare ResNet-50 backbone and the momentum stochastic gradient descent(SGD) optimizer. Experiment results show that ResNeXt-50 based on the ADAM optimization algorithm has better performance. With a pre-trained model and fine-tuning, it can achieve 97.845 0% top-1 accuracy on the LandingScenes-7dataset, paving the way for drones to autonomously learn landing scenes. 展开更多
关键词 landing scene recognition convolutional neural network(CNN) transfer learning remote sensing image
在线阅读 下载PDF
Research on Automatic Diagnostic Technology of Soybean Leaf Diseases Based on Improved Transfer Learning
7
作者 Yu Xiao Jing Yong-dong Zheng Lu-lu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第2期62-72,共11页
Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer ... Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer learning,a classification method of the soybean leaf diseases was proposed in this paper.In detail,this method first removed the complicated background in images and cut apart leaves from the entire image;second,the data-augmented method was applied to amplify the separated leaf disease image dataset to reduce overfitting;at last,the automatically fine-tuning convolutional neural network(AutoTun)was adopted to classify the soybean leaf diseases.The proposed method respectively reached 94.23%,93.51%and 94.91%of validation accuracy rates on VGG-16,ResNet-34 and DenseNet-121,and it was compared with the traditional fine-tuning method of transfer learning.The results indicated that the proposed method had superior to the traditional transfer learning method. 展开更多
关键词 transfer learning deep convolutional neural network classification recognition soybean disease
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部