Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In to...Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.展开更多
Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and...Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and Guandu square) in Kun-ming City, China, which were applied to calculate quantities of plant leaf area of these 13 species. The quantities of plant leaf area for the other 17 ornamental plant species on these squares were directly measured, and the total quantity of plant leaf area of each studied square was obtained individually. The results showed that the quantity of plant leaf area on Shengli square with ornamental plants structure composed of arbor tree species, shrub tree species and turf grass was highest among the three squares. It is believed that the design model of multi-storied vertical structure and proper tending of plant community could not only increase the quantity of plant leaf area, but also play an important role in generating ecological and landscaping benefits. Some corresponding suggestions were put forward on the basis of comprehensive analyses on the plant leaf area quantity of the three representative squares in Kunming urban area.展开更多
Leaf area index(LAI) of Teak(Tectona grandis) and Bamboo(Dendrocalamus strictus) grown in Shoolpaneshwar Wildlife Sanctuary of Narmada District,Gujarat,India was obtained by destructive sampling,photo-grid metho...Leaf area index(LAI) of Teak(Tectona grandis) and Bamboo(Dendrocalamus strictus) grown in Shoolpaneshwar Wildlife Sanctuary of Narmada District,Gujarat,India was obtained by destructive sampling,photo-grid method and by litter trap method.An allometric equation(between leaf area by litter trap method and canopy spread area) was developed for the determination of LAI.Results show that LAI value calculated by the developed allometric equation was similar to that estimated by destructive sampling and photo-grid method,with Root Mean Square Error(RMSE) of 0.90 and 1.15 for Teak,and 0.38 and 0.46 for Bamboo,respectively.There was a perfect match in both the LAI values(estimated and calculated),indicating the accuracy of the developed equations for both the species.In conclusion,canopy spread is a better and sensitive parameter to estimate leaf area of trees.The developed equations can be used for estimating LAI of Teak and Bamboo in tropics.展开更多
Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To eva...Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To evaluate the foliage and light distributions directly and nondestructively in a mature oak stand,we used the cube method by dividing the forest canopy into small cubes(50 cm per side)and directly measured leaf area density(LAD,the total one-sided leaf area per unit volume,i.e.,cube)and relative irradiance(RI)within each cube.The distribution of LAD and of RI was highly heterogeneous,even at the same canopy height.This heterogeneity reflected the presence of foliage clusters associated with multiple forking branches.The relationship between cumulative LAD at the canopy surface and average RI followed the Beer-Lambert law.The mean light extinction coefficient(K)was 0.32.However,K was overestimated by more than double(0.80)when calculated based on the classical method using RI at the forest floor.This overestimation was caused by the lower RI due to light absorption by nonleaf plant parts below the canopy.Our findings on the complex foliage and light distributions in canopy layers should help improve the accuracy of RI and K measurements and thus more accurate predictions of environmental responses and forest functions.展开更多
Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ...Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ecosystem exchange(NEE).Methods to estimate forest NEE without intensive site sampling are needed to accurately assess rates of carbon sequestration at stand-level and larger scales.We produced spatially-explicit estimates of NEE for 9 770 ha of slash pine(Pinus elliottii) plantations in North-Central Florida for a single year by coupling remote sensing-based estimates of leaf area index(LAI) with a process-based growth simulation model.LAI estimates produced from a neural-network modeling of ground plot and Landsat TM satellite data had a mean of 1.06(range 0-3.93,including forest edges).Using the neural network LAI values as inputs,the slash pine simulation model(SPM2) estimates of NEE ranged from-5.52 to 11.06 Mg·ha^-1·a^-1with a mean of 3.47 Mg·ha^-1·a^-1Total carbon storage for the year was 33920 t,or about 3.5 tons per hectare.Both estimated LAI and NEE were highly sensitive to fertilization.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
The amount of photosynthetic radiation inter- cepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (LAI), and the light extinction coefficient (k). We quantified LAI an...The amount of photosynthetic radiation inter- cepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (LAI), and the light extinction coefficient (k). We quantified LAI and k in stands of black wattle (Acacia mearnsii De Wild.) over a 7-year growth cycle at two locations in the state of Rio Grande do Sul, Brazil. Our study was conducted in commercial stands in agroecological regions with high densities of black wattle plantations. LAI was calculated as the ratio between the leaf area of a tree and its planting space, and k was derived from Beer's law. LAI depends on the planting site and stand age. Between the two sites, the LAI was similar over time, the amount of variation differed. Values of k depended only on stand age, with the highest average observed for stands up to 5 years old. The trend of k during the plantation cycle was inversely proportional to LAI and was correlated with LAI, leaf area, leaf dry mass, canopy volume, height, branches dry mass, total dry mass, and crown diameter.展开更多
Voxel-based canopy profiling is commonly used to determine small-scale leaf area.Layer thickness and voxel size impact accuracy when using this method.Here,we determined the optimal combination of layer thickness and ...Voxel-based canopy profiling is commonly used to determine small-scale leaf area.Layer thickness and voxel size impact accuracy when using this method.Here,we determined the optimal combination of layer thickness and voxel size to estimate leaf area density accurately.Terrestrial LiDAR Stonex X300 was used to generate point cloud data for Masson pines(Pinus massoniana).The canopy layer was stratified into 0.10-1.00-m-thick layers,while voxel size was 0.01-0.10 m.The leaf area density of individual trees was estimated using leaf area indices for the upper,middle,and lower canopy and the overall canopy.The true leaf area index,obtained by layered harvesting,was used to verify the inversion results.Leaf area density was inverted by nine combinations of layer thickness and voxel size.The average relative accuracy and mean estimated accuracy of these combined inversion results exceeded 80%.When layer thickness was 1.00 m and voxel size 0.05 m,inversion was closest to the true value.The average relative accuracy was 92.58%,mean estimated accuracy 98.00%,and root mean square error 0.17.The combination of leaf area density and index was accurately retrieved.In conclusion,nondestructive voxel-based canopy profiling proved suitable for inverting the leaf area density of Masson pine in Hetian Town,Fujian Province.展开更多
Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest ...Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.展开更多
The scaling relationship between leaf area and total mass of plant has important implications for understanding resource allocations in the plant.The model of West,Brown and Enquist(WBE model)considers that a 3/4 scal...The scaling relationship between leaf area and total mass of plant has important implications for understanding resource allocations in the plant.The model of West,Brown and Enquist(WBE model)considers that a 3/4 scaling exponent of metabolic rate versus total mass to be optimal for each plant and has been confirmed numerous times.Although leaf area is a better proxy of the metabolic rate than leaf mass,few studies have focused on the scaling exponent of leaf area versus total mass and even fewer have discussed the diversification of this scaling exponent across different conditions.Here,I analyzed the scaling exponent of leaf area versus total mass of sample plots across world plants.I found that as the plant grows,it allocates fewer resources to photosynthetic tissues than expected by the WBE model.The results also empirically show that this scaling exponent varies significantly for different plant leaf habit,taxonomic class and geographic region.Therefore,leaf strategy in response to environmental pressure and constraint clearly plays a significant role.展开更多
Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seas...Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon.This study meas-ured litterfall production,leaf nutrient remobilization,and leaf area index on a forest plateau in the central Amazon.Litterfall was measured at monthly intervals during 2014,while nitrogen,phosphorus,potassium,calcium and mag-nesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons,and remobilization rates determined.Leaf area index was also recorded in the dry and rainy seasons.Monthly litterfall varied from 33.2(in the rainy season)to 87.6 g m^(-2) in the dry season,while leaf area index increased slightly in the rainy season.Climatic seasonality had no effect on concentrations of nitrogen,calcium,and magnesium,whereas phosphorous and potassium responded to rainfall seasonality oppositely.While phosphorous increased,potassium decreased during the dry season.Over seasons,nitrogen,potassium,and phosphorous decreased in leaf litter;calcium increased in leaf litter,while magnesium remained unaffected with leaf aging.Regardless,the five nutrients had similar remobilization rates over the year.The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.展开更多
A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing imp...A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing important horticultural traits.Canopy density during leaf fall is important as the seasonal canopy dynamics provides insights to environmental cues and breeding potential of germplasm.The ability of visual raters to estimate canopy density on a subset of the provenance collection(76 trees)as an indicator of leaf shed during autumn along with image analysis values was explored.Mean canopy density using the image analysis software was less compared to visual estimates(11.9%vs 18.4%,respectively).At higher canopy densities,the raters overestimated foliage density,but overall agreement between raters and measured values was good(ρc=0.849 to 0.915),and inter-rater reliability was high(R^(2)=0.910 to 0.953).The provenance from Missouri(MOL),the northernmost provenance,had the lowest canopy density in November,and results show that the higher the latitude of the provenance,the lower the canopy density.Based on regression,the source provenance latitude explained 0.609 of the variation using image analysis,and0.551 to 0.640 when based on the rater estimates of canopy density.Visual assessment of pecan canopy density due to late season leaf fall for comparing pecan genotypes provides accurate and reliable estimates and could be used in future studies of the whole provenance collection.展开更多
Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two eve...Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osrnanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leafchlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture anduse efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration.展开更多
In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local sh...In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.展开更多
Bruguiera sexangula(Lour.)Poir is an exclusive evergreen mangrove species to the Sundarbans of Bangladesh.It grows well in moderate saline zones with full sunlight.This study presents leaf morphological plasticity in ...Bruguiera sexangula(Lour.)Poir is an exclusive evergreen mangrove species to the Sundarbans of Bangladesh.It grows well in moderate saline zones with full sunlight.This study presents leaf morphological plasticity in B.sexangula to saline zones.Leaves were sampled from different saline zones and various morphological traits were measured.The results exposed a wide deviations of leaf size parameters:leaf length varied 6.6–17.3 cm;width 2.7–7.8 cm;upper quarter width 2.2–6.5 cm;down quarter width 2.5–7.3 cm;and petiole length 0.17–1.43 cm.Leaf length was significantly larger in fresh water than in other salinity zones,whereas,leaf width,upper and lower leaf quarters were significantly larger in medium saline zone.Leaf shape parameters showed a large variation among saline zones.Leaf base angle was significantly larger in both medium and strong salinity zones.Tip angle was significantly greater in medium salinity zone.Leaf perimeter was significantly larger in fresh water but leaf area was significantly bigger in medium saline zone.Leaf index and specific leaf area were maximum in moderate saline zone.Plasticity index was the highest in moderate saline for almost all the parameters presented.The ordination(PCA)showed clusters of leaf samples although there were some overlap among them which suggested a salt-stress relationship among salinity zones.The results indicate that B.sexangula had a plasticity strategy on leaf morphological parameters to salinity in the Sundarbans.This study will provide basic information of leaf plasticity of this species among saline zones which will help for site selection of coastal planting and will also provide information for policy makers to take necessary steps for its conservation.展开更多
Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information...Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations.展开更多
选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加...选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R^(2)=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R^(2)=0.620,RMSE=0.826)。展开更多
Investigating the effects of ontogenetic stage and leaf age on leaf traits is important for understanding the utilization and distribution of resources in the process of plant growth.However,few studies have been cond...Investigating the effects of ontogenetic stage and leaf age on leaf traits is important for understanding the utilization and distribution of resources in the process of plant growth.However,few studies have been conducted to show how traits and trait-trait relationships change across a range of ontogenetic stage and leaf age for evergreen coniferous species.We divided 67 Pinus koraiensis Sieb.et Zucc.of various sizes(0.3-100 cm diameter at breast height,DBH)into four ontogenetic stages,i.e.,young trees,middle-aged trees,mature trees and over-mature trees,and measured the leaf mass per area(LMA),leaf dry matter content(LDMC),and mass-based leaf nitrogen content(N)and phosphorus content(P)of each leaf age group for each sampled tree.One-way analysis of variance(ANOVA)was used to describe the variation in leaf traits by ontogenetic stage and leaf age.The standardized major axis method was used to explore the effects of ontogenetic stage and leaf age on trait-trait relationships.We found that LMA and LDMC increased significantly and N and P decreased significantly with increases in the ontogenetic stage and leaf age.Most trait-trait relationships were consistent with the leaf economic spectrum(LES)at a global scale.Among them,leaf N content and LDMC showed a significant negative correlation,leaf N and P contents showed a significant positive correlation,and the absolute value of the slopes of the trait-trait relationships showed a gradually increasing trend with an increasing ontogenetic stage.LMA and LDMC showed a significant positive correlation,and the slopes of the trait-trait relationships showed a gradually decreasing trend with leaf age.Additionally,there were no significant relationships between leaf N content and LMA in most groups,which is contrary to the expectation of the LES.Overall,in the early ontogenetic stages and leaf ages,the leaf traits tend to be related to a"low investment-quick returns"resource strategy.In contrast,in the late ontogenetic stages and leaf ages,they tend to be related to a"high investment-slow returns"resource strategy.Our results reflect the optimal allocation of resources in Pinus koraiensis according to its functional needs during tree and leaf ontogeny.展开更多
文摘Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.
基金This research was sponsored by Educational Department of Yunnan Province (No. 03Z583B).
文摘Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and Guandu square) in Kun-ming City, China, which were applied to calculate quantities of plant leaf area of these 13 species. The quantities of plant leaf area for the other 17 ornamental plant species on these squares were directly measured, and the total quantity of plant leaf area of each studied square was obtained individually. The results showed that the quantity of plant leaf area on Shengli square with ornamental plants structure composed of arbor tree species, shrub tree species and turf grass was highest among the three squares. It is believed that the design model of multi-storied vertical structure and proper tending of plant community could not only increase the quantity of plant leaf area, but also play an important role in generating ecological and landscaping benefits. Some corresponding suggestions were put forward on the basis of comprehensive analyses on the plant leaf area quantity of the three representative squares in Kunming urban area.
基金supported by ISRO-SAC,Ahmeda-bad,and DST,New Delhi through SSS programme (Project No SR/S4/ES-21/Baroda window P2)
文摘Leaf area index(LAI) of Teak(Tectona grandis) and Bamboo(Dendrocalamus strictus) grown in Shoolpaneshwar Wildlife Sanctuary of Narmada District,Gujarat,India was obtained by destructive sampling,photo-grid method and by litter trap method.An allometric equation(between leaf area by litter trap method and canopy spread area) was developed for the determination of LAI.Results show that LAI value calculated by the developed allometric equation was similar to that estimated by destructive sampling and photo-grid method,with Root Mean Square Error(RMSE) of 0.90 and 1.15 for Teak,and 0.38 and 0.46 for Bamboo,respectively.There was a perfect match in both the LAI values(estimated and calculated),indicating the accuracy of the developed equations for both the species.In conclusion,canopy spread is a better and sensitive parameter to estimate leaf area of trees.The developed equations can be used for estimating LAI of Teak and Bamboo in tropics.
基金partly supported by Grant-in-Aid for scientific research(No.17658070,22580173)from the Ministry of Education,Science and Culture,Japan“Evaluation of genetic resources for strengthening productivity and adaptability of tropical forests”from the Japan International Research Centre for Agricultural Sciences。
文摘Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To evaluate the foliage and light distributions directly and nondestructively in a mature oak stand,we used the cube method by dividing the forest canopy into small cubes(50 cm per side)and directly measured leaf area density(LAD,the total one-sided leaf area per unit volume,i.e.,cube)and relative irradiance(RI)within each cube.The distribution of LAD and of RI was highly heterogeneous,even at the same canopy height.This heterogeneity reflected the presence of foliage clusters associated with multiple forking branches.The relationship between cumulative LAD at the canopy surface and average RI followed the Beer-Lambert law.The mean light extinction coefficient(K)was 0.32.However,K was overestimated by more than double(0.80)when calculated based on the classical method using RI at the forest floor.This overestimation was caused by the lower RI due to light absorption by nonleaf plant parts below the canopy.Our findings on the complex foliage and light distributions in canopy layers should help improve the accuracy of RI and K measurements and thus more accurate predictions of environmental responses and forest functions.
基金supported by the United States Forest Service and the Forest Biology Research Cooperative at the University of Florida
文摘Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ecosystem exchange(NEE).Methods to estimate forest NEE without intensive site sampling are needed to accurately assess rates of carbon sequestration at stand-level and larger scales.We produced spatially-explicit estimates of NEE for 9 770 ha of slash pine(Pinus elliottii) plantations in North-Central Florida for a single year by coupling remote sensing-based estimates of leaf area index(LAI) with a process-based growth simulation model.LAI estimates produced from a neural-network modeling of ground plot and Landsat TM satellite data had a mean of 1.06(range 0-3.93,including forest edges).Using the neural network LAI values as inputs,the slash pine simulation model(SPM2) estimates of NEE ranged from-5.52 to 11.06 Mg·ha^-1·a^-1with a mean of 3.47 Mg·ha^-1·a^-1Total carbon storage for the year was 33920 t,or about 3.5 tons per hectare.Both estimated LAI and NEE were highly sensitive to fertilization.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘The amount of photosynthetic radiation inter- cepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (LAI), and the light extinction coefficient (k). We quantified LAI and k in stands of black wattle (Acacia mearnsii De Wild.) over a 7-year growth cycle at two locations in the state of Rio Grande do Sul, Brazil. Our study was conducted in commercial stands in agroecological regions with high densities of black wattle plantations. LAI was calculated as the ratio between the leaf area of a tree and its planting space, and k was derived from Beer's law. LAI depends on the planting site and stand age. Between the two sites, the LAI was similar over time, the amount of variation differed. Values of k depended only on stand age, with the highest average observed for stands up to 5 years old. The trend of k during the plantation cycle was inversely proportional to LAI and was correlated with LAI, leaf area, leaf dry mass, canopy volume, height, branches dry mass, total dry mass, and crown diameter.
基金This research was funded by Fujian University Industry-University Cooperation Project(grant number 2019N5012)Remote Sensing Quantitative Simulation of Rainfall Erosion Reduction Function of Forest Vertical Structure(grant number 31770760).
文摘Voxel-based canopy profiling is commonly used to determine small-scale leaf area.Layer thickness and voxel size impact accuracy when using this method.Here,we determined the optimal combination of layer thickness and voxel size to estimate leaf area density accurately.Terrestrial LiDAR Stonex X300 was used to generate point cloud data for Masson pines(Pinus massoniana).The canopy layer was stratified into 0.10-1.00-m-thick layers,while voxel size was 0.01-0.10 m.The leaf area density of individual trees was estimated using leaf area indices for the upper,middle,and lower canopy and the overall canopy.The true leaf area index,obtained by layered harvesting,was used to verify the inversion results.Leaf area density was inverted by nine combinations of layer thickness and voxel size.The average relative accuracy and mean estimated accuracy of these combined inversion results exceeded 80%.When layer thickness was 1.00 m and voxel size 0.05 m,inversion was closest to the true value.The average relative accuracy was 92.58%,mean estimated accuracy 98.00%,and root mean square error 0.17.The combination of leaf area density and index was accurately retrieved.In conclusion,nondestructive voxel-based canopy profiling proved suitable for inverting the leaf area density of Masson pine in Hetian Town,Fujian Province.
基金the National Science Foundation of China(Grant Nos.41871233,41371330 , 41001203).
文摘Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.
文摘The scaling relationship between leaf area and total mass of plant has important implications for understanding resource allocations in the plant.The model of West,Brown and Enquist(WBE model)considers that a 3/4 scaling exponent of metabolic rate versus total mass to be optimal for each plant and has been confirmed numerous times.Although leaf area is a better proxy of the metabolic rate than leaf mass,few studies have focused on the scaling exponent of leaf area versus total mass and even fewer have discussed the diversification of this scaling exponent across different conditions.Here,I analyzed the scaling exponent of leaf area versus total mass of sample plots across world plants.I found that as the plant grows,it allocates fewer resources to photosynthetic tissues than expected by the WBE model.The results also empirically show that this scaling exponent varies significantly for different plant leaf habit,taxonomic class and geographic region.Therefore,leaf strategy in response to environmental pressure and constraint clearly plays a significant role.
基金supported by the Ministerio da Ciencia,Tecnologia e Inovacoes (MCTI-INPA),Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq,grant number:303913/2021-5)Fundagao de Amparo a Pesquisa do Estado do Amazonas (FAPEAM)Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES code 0001).
文摘Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon.This study meas-ured litterfall production,leaf nutrient remobilization,and leaf area index on a forest plateau in the central Amazon.Litterfall was measured at monthly intervals during 2014,while nitrogen,phosphorus,potassium,calcium and mag-nesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons,and remobilization rates determined.Leaf area index was also recorded in the dry and rainy seasons.Monthly litterfall varied from 33.2(in the rainy season)to 87.6 g m^(-2) in the dry season,while leaf area index increased slightly in the rainy season.Climatic seasonality had no effect on concentrations of nitrogen,calcium,and magnesium,whereas phosphorous and potassium responded to rainfall seasonality oppositely.While phosphorous increased,potassium decreased during the dry season.Over seasons,nitrogen,potassium,and phosphorous decreased in leaf litter;calcium increased in leaf litter,while magnesium remained unaffected with leaf aging.Regardless,the five nutrients had similar remobilization rates over the year.The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.
基金supported by the USDA-ARS through CRIS project 6606-21220-014–00Dthe National Institute of Food and Agriculture–Specialty Crops Research Initiative grant 2016-51181-25408“Coordinated development of genetic tools for pecan”。
文摘A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing important horticultural traits.Canopy density during leaf fall is important as the seasonal canopy dynamics provides insights to environmental cues and breeding potential of germplasm.The ability of visual raters to estimate canopy density on a subset of the provenance collection(76 trees)as an indicator of leaf shed during autumn along with image analysis values was explored.Mean canopy density using the image analysis software was less compared to visual estimates(11.9%vs 18.4%,respectively).At higher canopy densities,the raters overestimated foliage density,but overall agreement between raters and measured values was good(ρc=0.849 to 0.915),and inter-rater reliability was high(R^(2)=0.910 to 0.953).The provenance from Missouri(MOL),the northernmost provenance,had the lowest canopy density in November,and results show that the higher the latitude of the provenance,the lower the canopy density.Based on regression,the source provenance latitude explained 0.609 of the variation using image analysis,and0.551 to 0.640 when based on the rater estimates of canopy density.Visual assessment of pecan canopy density due to late season leaf fall for comparing pecan genotypes provides accurate and reliable estimates and could be used in future studies of the whole provenance collection.
基金financially supported by the National Natural Science Foundation of China(31300343)Natural Science Foundation of Jiangsu Province,China(BK20130500)Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment
文摘Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osrnanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leafchlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture anduse efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration.
基金supported by the national Knowledge Innovation Project (KIP) at the Chinese Academy of Sciences (CAS) (No. KZCX2-YW-Q06-2)Project of Northeast Institute of Geography and Agroecology, CAS (No. KZCX3-SW-NA3-29)
文摘In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.
基金supported by JSPS RONPAKU Program FY2018,Japan(R11810)Bangladesh University Grants Commission(UGC/SciTech/Agri(Crop-47)-26/2017/4915)。
文摘Bruguiera sexangula(Lour.)Poir is an exclusive evergreen mangrove species to the Sundarbans of Bangladesh.It grows well in moderate saline zones with full sunlight.This study presents leaf morphological plasticity in B.sexangula to saline zones.Leaves were sampled from different saline zones and various morphological traits were measured.The results exposed a wide deviations of leaf size parameters:leaf length varied 6.6–17.3 cm;width 2.7–7.8 cm;upper quarter width 2.2–6.5 cm;down quarter width 2.5–7.3 cm;and petiole length 0.17–1.43 cm.Leaf length was significantly larger in fresh water than in other salinity zones,whereas,leaf width,upper and lower leaf quarters were significantly larger in medium saline zone.Leaf shape parameters showed a large variation among saline zones.Leaf base angle was significantly larger in both medium and strong salinity zones.Tip angle was significantly greater in medium salinity zone.Leaf perimeter was significantly larger in fresh water but leaf area was significantly bigger in medium saline zone.Leaf index and specific leaf area were maximum in moderate saline zone.Plasticity index was the highest in moderate saline for almost all the parameters presented.The ordination(PCA)showed clusters of leaf samples although there were some overlap among them which suggested a salt-stress relationship among salinity zones.The results indicate that B.sexangula had a plasticity strategy on leaf morphological parameters to salinity in the Sundarbans.This study will provide basic information of leaf plasticity of this species among saline zones which will help for site selection of coastal planting and will also provide information for policy makers to take necessary steps for its conservation.
基金The study was financially supported by the National Key R&D Program of China(2017YFC0504601).
文摘Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations.
文摘选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R^(2)=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R^(2)=0.620,RMSE=0.826)。
基金The work was financially supported by the National Natural Science Foundation of China(No.31971636)Yong Elite Scientists Sponsorship Program by CAST(2018QNRC001)the Fundamental Research Fund for the Central Universities(2572018CG03).
文摘Investigating the effects of ontogenetic stage and leaf age on leaf traits is important for understanding the utilization and distribution of resources in the process of plant growth.However,few studies have been conducted to show how traits and trait-trait relationships change across a range of ontogenetic stage and leaf age for evergreen coniferous species.We divided 67 Pinus koraiensis Sieb.et Zucc.of various sizes(0.3-100 cm diameter at breast height,DBH)into four ontogenetic stages,i.e.,young trees,middle-aged trees,mature trees and over-mature trees,and measured the leaf mass per area(LMA),leaf dry matter content(LDMC),and mass-based leaf nitrogen content(N)and phosphorus content(P)of each leaf age group for each sampled tree.One-way analysis of variance(ANOVA)was used to describe the variation in leaf traits by ontogenetic stage and leaf age.The standardized major axis method was used to explore the effects of ontogenetic stage and leaf age on trait-trait relationships.We found that LMA and LDMC increased significantly and N and P decreased significantly with increases in the ontogenetic stage and leaf age.Most trait-trait relationships were consistent with the leaf economic spectrum(LES)at a global scale.Among them,leaf N content and LDMC showed a significant negative correlation,leaf N and P contents showed a significant positive correlation,and the absolute value of the slopes of the trait-trait relationships showed a gradually increasing trend with an increasing ontogenetic stage.LMA and LDMC showed a significant positive correlation,and the slopes of the trait-trait relationships showed a gradually decreasing trend with leaf age.Additionally,there were no significant relationships between leaf N content and LMA in most groups,which is contrary to the expectation of the LES.Overall,in the early ontogenetic stages and leaf ages,the leaf traits tend to be related to a"low investment-quick returns"resource strategy.In contrast,in the late ontogenetic stages and leaf ages,they tend to be related to a"high investment-slow returns"resource strategy.Our results reflect the optimal allocation of resources in Pinus koraiensis according to its functional needs during tree and leaf ontogeny.