Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determi...Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determined. This process is called stope layout optimization (SLO) and implemented under site-specific geotechnical, operational and economic constraints. For practical purpose, the design obtained by SLO shows consecutive stopes in one path, which assists in defining the mining direction of these stopes. However, this direction may not accommodate the spatial distribution of the ore grade: if the orebody orientation and mining direction differ, the value of the mining operation may decrease. This paper proposes an approach whereby paths in the SLO are defined as decision variables to avoid the cost of mining in the wrong direction. Furthermore, in the genetic-based formulation, which accounts for orebody uncertainty, a robust cluster average design process is proposed to improve SLO’s performance regarding metal content. A case study in narrow gold vein deposit shows that the profit of an underground mining operation could be underestimated by 25%-48% if the algorithm ignores stope layout orientation.展开更多
In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these metho...In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.展开更多
基金Project(488262-15)supported by the Natural Sciences and Engineering Research Council of Canada
文摘Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determined. This process is called stope layout optimization (SLO) and implemented under site-specific geotechnical, operational and economic constraints. For practical purpose, the design obtained by SLO shows consecutive stopes in one path, which assists in defining the mining direction of these stopes. However, this direction may not accommodate the spatial distribution of the ore grade: if the orebody orientation and mining direction differ, the value of the mining operation may decrease. This paper proposes an approach whereby paths in the SLO are defined as decision variables to avoid the cost of mining in the wrong direction. Furthermore, in the genetic-based formulation, which accounts for orebody uncertainty, a robust cluster average design process is proposed to improve SLO’s performance regarding metal content. A case study in narrow gold vein deposit shows that the profit of an underground mining operation could be underestimated by 25%-48% if the algorithm ignores stope layout orientation.
基金financially supported by the Ministry of Education, Science, and Technology (MEST)the National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovationsupported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (No.20114010203040) grant funded by the Korean government’s Ministry of Knowledge Economy
文摘In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.