Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna...Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.展开更多
Numerical study was performed for a better understanding on thermomagnetic convection under magnetic quadrupole field utilizing the lattice Boltzmann method. Present problem was examined under non-gravitational and gr...Numerical study was performed for a better understanding on thermomagnetic convection under magnetic quadrupole field utilizing the lattice Boltzmann method. Present problem was examined under non-gravitational and gravitational conditions for a wide range of magnetic force number from 0 to 1000. Vertical walls of the square cavity were heated differentially while the horizontal walls were assumed to be adiabatic. Distributions of the flow and temperature field were clearly illustrated. Under non-gravitational condition, the flow presents a two-cellular structure with horizontal symmetry, and the average Nusselt number increases with the augment of magnetic force number. Under gravitational condition, two-cellular structure only occurs when the magnetic field is relatively strong, and the average Nusselt number decreases at first and then rises with the enhancing magnetic field. Results show that the magnetic field intensity and the Rayleigh number both have significant influence on convective heat transfer, and the gravity plays a positive role in heat transfer under weak magnetic field while a negative one for magnetic force numbers larger than 1×10~5.展开更多
基金Project(U1261107)supported by the National Natural Science Foundation of China
文摘Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.
基金Project(11572056)supported by the National Natural Science Foundation of ChinaProject(15A006)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘Numerical study was performed for a better understanding on thermomagnetic convection under magnetic quadrupole field utilizing the lattice Boltzmann method. Present problem was examined under non-gravitational and gravitational conditions for a wide range of magnetic force number from 0 to 1000. Vertical walls of the square cavity were heated differentially while the horizontal walls were assumed to be adiabatic. Distributions of the flow and temperature field were clearly illustrated. Under non-gravitational condition, the flow presents a two-cellular structure with horizontal symmetry, and the average Nusselt number increases with the augment of magnetic force number. Under gravitational condition, two-cellular structure only occurs when the magnetic field is relatively strong, and the average Nusselt number decreases at first and then rises with the enhancing magnetic field. Results show that the magnetic field intensity and the Rayleigh number both have significant influence on convective heat transfer, and the gravity plays a positive role in heat transfer under weak magnetic field while a negative one for magnetic force numbers larger than 1×10~5.