期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-objectives nonlinear structure optimization for actuator in trajectory correction fuze subject to high impact loadings 被引量:4
1
作者 Jiang-hai Hui Min Gao +3 位作者 Ming Li Ming-rui Li Hui-hui Zou Gang Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1338-1351,共14页
This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,... This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient. 展开更多
关键词 ACTUATOR Trajectory correction fuze Impact loadings Optimized latin hypercube design Kriging model Optimization algorithm
在线阅读 下载PDF
Post-failure analysis of landslides in spatially varying soil deposits using stochastic material point method
2
作者 马国涛 REZANIA Mohammad +1 位作者 MOUSAVI NEZHAD Mohaddeseh SHI Bu-tao 《岩土力学》 EI CAS CSCD 北大核心 2022年第7期2003-2014,共12页
This paper presents the probabilistic analysis of landslides in spatially variable soil deposits, modeled by a stochastic framework which integrates the random field theory with generalized interpolation material poin... This paper presents the probabilistic analysis of landslides in spatially variable soil deposits, modeled by a stochastic framework which integrates the random field theory with generalized interpolation material point method(GIMP). Random fields are simulated using Cholesky matrix decomposition(CMD) method and Latin hypercube sampling(LHS) method, which represent material properties discretized into sets of random soil shear strength variables with statistical properties. The approach is applied to landslides in clayey deposits under undrained conditions with random fields of undrained shear strength parameters, in order to quantify the uncertainties of post-failure behavior at different scales of fluctuation(SOF) and coefficients of variation(COV). Results show that the employed approach can reliably simulate the whole landslide process and assess the uncertainties of runout motions. It is demonstrated that the natural heterogeneity of shear strength in landslides notably influences their post-failure behavior. Compared with a homogeneous landslide model which yields conservative results and underestimation of the risks, consideration of heterogeneity shows larger landslide influence zones. With SOF values increasing, the variances of influence zones also increase, and with higher values of COV, the mean values of the influence zone also increase, resulting in higher uncertainties of post-failure behavior. 展开更多
关键词 probabilistic analysis random fields latin hypercube sampling LANDSLIDES
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部