期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
基于LDA模型和意象图式的产品隐喻设计方法研究 被引量:1
1
作者 侯士江 卫建君 +3 位作者 孙宇辰 鲁莹 王佳棋 廉博杰 《包装工程》 CAS 北大核心 2024年第16期138-149,170,共13页
目的为实现隐喻设计方法的喻体选择和隐喻转译,结合LDA模型和意象图式提出一种新型产品隐喻设计方法。方法应用LDA聚类分析始源域中事件的情绪体验,获取用户在始源域中的主题喻体。基于深度访谈和图式表征分析提取意象图式,并通过AHP评... 目的为实现隐喻设计方法的喻体选择和隐喻转译,结合LDA模型和意象图式提出一种新型产品隐喻设计方法。方法应用LDA聚类分析始源域中事件的情绪体验,获取用户在始源域中的主题喻体。基于深度访谈和图式表征分析提取意象图式,并通过AHP评价排序获取重要图式转译因子。将图式因子进行组合表述,联想产品相应功能特征,完成意象喻体到产品主体的转译。结果以减压产品为例进行设计实践,通过LDA聚类获取了感官放松、情感满足、体验良性发展、探索未知、无意识本能、体能释放六大主题与相应模态,以及与主题对应的图示因子,并以可视化桌面蓝牙音箱为设计载体,从视觉、听觉和触觉模态介入,结合图式联想完成了音乐播放、探索互动、自动休眠和情绪释放4个功能隐喻设计。利用加权算法对设计方案进行测试评估,验证了设计方法的合理性。结论从隐喻设计现状出发,探索了基于LDA模型和意象图式的产品隐喻设计方法并加以实践,验证理论与方法的可行性与有效性,为产品隐喻设计乃至其他情感价值类产品的设计研究提供了优质案例与借鉴。 展开更多
关键词 产品设计 隐喻设计 lda模型 意象图式
在线阅读 下载PDF
基于LDA主题模型的在途驾驶风格识别方法
2
作者 汪娇 刘锴 +2 位作者 栗慧哲 曹鹏 王秋玲 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期197-204,共8页
为增强人机共驾条件下智能系统对个体驾驶行为的理解,提出一种基于潜在狄利克雷分配(LDA)主题模型的在途驾驶风格识别方法,从多维度挖掘车辆轨迹信息,快速提取和识别驾驶员潜在驾驶风格特征。首先,建立驾驶行为语义理解规则,从驾驶作业... 为增强人机共驾条件下智能系统对个体驾驶行为的理解,提出一种基于潜在狄利克雷分配(LDA)主题模型的在途驾驶风格识别方法,从多维度挖掘车辆轨迹信息,快速提取和识别驾驶员潜在驾驶风格特征。首先,建立驾驶行为语义理解规则,从驾驶作业的场景感知层、模式层、操作层以及车辆状态层出发,将连续的轨迹时序数据阐述为驾驶行为语义理解词汇;其次,根据主题困惑度和主题一致性指标定义4类习惯性驾驶风格:稳定型、保守型、适中型以及激进型;最后,将每位驾驶员的在途驾驶风格识别为上述驾驶风格的概率组合。结果表明:所提出的在途驾驶风格识别方法考虑驾驶员在驾驶过程中的异质性和不一致性,能够解释同一驾驶员在不同驾驶环境下表现出差异化驾驶风格的现象,同时,有助于提高驾驶风格在途识别的全面性以及可理解性。 展开更多
关键词 潜在狄利克雷分配(lda)主题模型 在途驾驶风格 轨迹数据 语义理解 驾驶行为
在线阅读 下载PDF
基于文本挖掘的连环追尾事故影响因素及严重程度
3
作者 王玲 李义丹 +3 位作者 王子坚 张龙 邢莹莹 马万经 《同济大学学报(自然科学版)》 北大核心 2025年第7期1074-1083,共10页
基于爬取的近8年微博数据,通过隐含狄利克雷分布(latent Dirichlet allocation,LDA)主题模型和社会网络分析,识别了连环追尾事故的8个主题,揭示了事故的主要特征和发生机理。研究发现高速公路是最主要的事故场景;雨雪天气引发事故频率... 基于爬取的近8年微博数据,通过隐含狄利克雷分布(latent Dirichlet allocation,LDA)主题模型和社会网络分析,识别了连环追尾事故的8个主题,揭示了事故的主要特征和发生机理。研究发现高速公路是最主要的事故场景;雨雪天气引发事故频率高于雾天;未保持安全车距和超速行为显著增加事故风险。利用LDA对每篇文档进行主题分配,结合正则表达式提取的严重程度信息,构建了有序Logit回归模型,分析了不同主题对事故严重程度的影响。结果表明,连环追尾事故的平均受伤人数和死亡人数分别是机动车交通事故平均值的2.12倍和1.85倍。在高速公路上的连环追尾事故严重程度高于交叉口,其优势比(odd ratio,OR)值是交叉口的3.3倍;雾天事故的OR值是雨雪天气的9.4倍;货车行驶事故的OR值是轿车的4.6倍,是客车的2.2倍。 展开更多
关键词 交通安全 连环追尾 严重程度 文本挖掘 隐含狄利克雷分布 有序LOGIT模型
在线阅读 下载PDF
民航管制运行风险主题发现及演化趋势
4
作者 张洪海 戴一鸣 +2 位作者 刘文泉 石宗北 李一可 《科学技术与工程》 北大核心 2025年第17期7417-7429,共13页
空中交通管制运行安全正面临多元风险致因导致潜在危害的问题。为解决多元风险引发的管制不安全运行问题,基于对管制不安全运行事件报告的全面分析,对管制运行安全风险信息和潜在规则进行挖掘;通过对隐含狄利克雷分布(latent Dirichlet ... 空中交通管制运行安全正面临多元风险致因导致潜在危害的问题。为解决多元风险引发的管制不安全运行问题,基于对管制不安全运行事件报告的全面分析,对管制运行安全风险信息和潜在规则进行挖掘;通过对隐含狄利克雷分布(latent Dirichlet allocation,LDA)风险主题发现模型挖掘的风险主题和关键词进行分析,明确管制运行风险主题及不同风险主题间相互演化规律;针对风险主题关键词,构建了民航管制运行领域的基于BERT(bidirectional encoder representation from Transformers)模型的语义网络,分析风险主题相互关联的风险特征,得出风险主题间潜在关系,可为关键词间关联度的量化提供一定理论依据;促进民航管制运行安全风险的数字化呈现的发展,挖掘管制不安全信息,为准确感知管制运行风险奠定基础。 展开更多
关键词 空中交通管理 管制运行安全 风险管理 lda主题模型 语义网络
在线阅读 下载PDF
基于语义约束LDA的商品特征和情感词提取 被引量:54
5
作者 彭云 万常选 +3 位作者 江腾蛟 刘德喜 刘喜平 廖国琼 《软件学报》 EI CSCD 北大核心 2017年第3期676-693,共18页
随着网络购物的发展,Web上产生了大量的商品评论文本数据,其中蕴含着丰富的评价知识.如何从这些海量评论文本中有效地提取商品特征和情感词,进而获取特征级别的情感倾向,是进行商品评论细粒度情感分析的关键.根据中文商品评论文本的特点... 随着网络购物的发展,Web上产生了大量的商品评论文本数据,其中蕴含着丰富的评价知识.如何从这些海量评论文本中有效地提取商品特征和情感词,进而获取特征级别的情感倾向,是进行商品评论细粒度情感分析的关键.根据中文商品评论文本的特点,从句法分析、词义理解和语境相关等多角度获取词语间的语义关系,然后将其作为约束知识嵌入到主题模型,提出语义关系约束的主题模型SRC-LDA(semantic relation constrained LDA),用来实现语义指导下LDA的细粒度主题词提取.由于SRC-LDA改善了标准LDA对于主题词的语义理解和识别能力,从而提高了相同主题下主题词分配的关联度和不同主题下主题词分配的区分度,可以更多地发现细粒度特征词、情感词及其之间的语义关联性.实验结果表明,SRC-LDA对于细粒度特征和情感词的发现和提取具有较好的效果. 展开更多
关键词 lda模型 语义约束 商品特征 情感词
在线阅读 下载PDF
一种改进的LDA主题模型 被引量:47
6
作者 张小平 周雪忠 +3 位作者 黄厚宽 冯奇 陈世波 焦宏官 《北京交通大学学报》 CAS CSCD 北大核心 2010年第2期111-114,共4页
由于文档中的词符合幂律分布,使得LDA模型的主题分布向高频词倾斜,导致能够代表主题的多数词被少量的高频词淹没使得主题表达能力降低.通过一种高斯函数对特征词加权,改进LDA主题模型的主题分布.实验显示加权LDA模型获得的主题间的相关... 由于文档中的词符合幂律分布,使得LDA模型的主题分布向高频词倾斜,导致能够代表主题的多数词被少量的高频词淹没使得主题表达能力降低.通过一种高斯函数对特征词加权,改进LDA主题模型的主题分布.实验显示加权LDA模型获得的主题间的相关性以及复杂度(Perplexity)值都降低,说明改进模型在主题表达和预测性能方面都有所提高. 展开更多
关键词 lda Dirichlet分布 加权主题模型
在线阅读 下载PDF
融合显著信息的LDA极光图像分类 被引量:20
7
作者 韩冰 杨辰 高新波 《软件学报》 EI CSCD 北大核心 2013年第11期2758-2766,共9页
美丽的极光形态各异,不同形态的极光蕴含不同的物理意义,所以研究极光图像的分类具有重要的科学价值.在LDA(latent Dirichlet allocation)模型基础上提出了一种融合显著信息的LDA方法(LDA with saliency information,简称SI-LDA),利用... 美丽的极光形态各异,不同形态的极光蕴含不同的物理意义,所以研究极光图像的分类具有重要的科学价值.在LDA(latent Dirichlet allocation)模型基础上提出了一种融合显著信息的LDA方法(LDA with saliency information,简称SI-LDA),利用极光图像的谱残差(spectral residual,简称SR)显著信息生成视觉字典,加强极光图像的语义信息,并将其用于极光图像的特征表示.最后,利用SVM分类器对极光图像进行分类.实验结果表明,所提出的算法获得了良好的分类结果. 展开更多
关键词 极光图像 词袋模型 潜在狄利克雷分配 谱残差 显著信息
在线阅读 下载PDF
基于LDA模型的文本分割 被引量:55
8
作者 石晶 胡明 +1 位作者 石鑫 戴国忠 《计算机学报》 EI CSCD 北大核心 2008年第10期1865-1873,共9页
文本分割在信息提取、文摘自动生成、语言建模、首语消解等诸多领域都有极为重要的应用.基于LDA模型的文本分割以LDA为语料库及文本建模,利用MCMC中的Gibbs抽样进行推理,间接计算模型参数,获取词汇的概率分布,使隐藏于片段内的不同主题... 文本分割在信息提取、文摘自动生成、语言建模、首语消解等诸多领域都有极为重要的应用.基于LDA模型的文本分割以LDA为语料库及文本建模,利用MCMC中的Gibbs抽样进行推理,间接计算模型参数,获取词汇的概率分布,使隐藏于片段内的不同主题与文本表面的字词建立联系.实验以汉语的整句作为基本块,尝试多种相似性度量手段及边界估计策略,其最佳结果表明二者的恰当结合可以使片段边界的识别错误率远远低于其它同类算法. 展开更多
关键词 文本分割 lda模型 相似性度量 边界识别
在线阅读 下载PDF
基于Labeled-LDA模型的文本分类新算法 被引量:103
9
作者 李文波 孙乐 张大鲲 《计算机学报》 EI CSCD 北大核心 2008年第4期620-627,共8页
LDA(Latent Dirichlet Allocation)模型是近年来提出的一种能够提取文本隐含主题的非监督学习模型.通过在传统LDA模型中融入文本类别信息,文中提出了一种附加类别标签的LDA模型(Labeled-LDA).基于该模型可以在各类别上协同计算隐含主题... LDA(Latent Dirichlet Allocation)模型是近年来提出的一种能够提取文本隐含主题的非监督学习模型.通过在传统LDA模型中融入文本类别信息,文中提出了一种附加类别标签的LDA模型(Labeled-LDA).基于该模型可以在各类别上协同计算隐含主题的分配量,从而克服了传统LDA模型用于分类时强制分配隐含主题的缺陷.与传统LDA模型的实验对比表明:基于Labeled-LDA模型的文本分类新算法可以有效改进文本分类的性能,在复旦大学中文语料库上micro-F1提高约5.7%,在英文语料库20newsgroup的comp子集上micro-F1提高约3%. 展开更多
关键词 文本分类 图模型 隐含狄利克雷分配 变分推断
在线阅读 下载PDF
基于LDA主题模型的文本相似度计算 被引量:102
10
作者 王振振 何明 杜永萍 《计算机科学》 CSCD 北大核心 2013年第12期229-232,共4页
LDA(Latent Dirichlet Allocation)模型是近年来提出的一种具有文本表示能力的非监督学习模型。提出了一种基于LDA主题模型的文本相似度计算方法,该方法利用LDA为语料库建模,利用MCMC中的Gibbs抽样进行推理,间接计算模型参数,挖掘隐藏... LDA(Latent Dirichlet Allocation)模型是近年来提出的一种具有文本表示能力的非监督学习模型。提出了一种基于LDA主题模型的文本相似度计算方法,该方法利用LDA为语料库建模,利用MCMC中的Gibbs抽样进行推理,间接计算模型参数,挖掘隐藏在文本内的不同主题与词之间的关系,得到文本的主题分布,并以此分布来计算文本之间的相似度,最后对文本相似度矩阵进行聚类实验来评估聚类效果。实验结果表明,该方法能够明显提高文本相似度计算的准确率和文本聚类效果。 展开更多
关键词 主题模型 lda 文本相似度 GIBBS抽样
在线阅读 下载PDF
基于LDA模型的音乐推荐算法 被引量:16
11
作者 李博 陈志刚 +1 位作者 黄瑞 郑祥云 《计算机工程》 CAS CSCD 北大核心 2016年第6期175-179,184,共6页
互联网的普及以及音乐资源的电子化使得人们可以更方便地获得音乐资源。但随着音乐库变得越来越大、资源越来越丰富,人们已经很难准确及时地找到自己喜欢的音乐。因此,对于音乐网站而言,需要一个合适的音乐推荐算法向用户推荐音乐。根... 互联网的普及以及音乐资源的电子化使得人们可以更方便地获得音乐资源。但随着音乐库变得越来越大、资源越来越丰富,人们已经很难准确及时地找到自己喜欢的音乐。因此,对于音乐网站而言,需要一个合适的音乐推荐算法向用户推荐音乐。根据已有的基于音频信息的音乐推荐以及协同过滤方法,分析用户的音乐试听数据以及下载数据,并结合Latent Dirichlet分配(LDA)主题挖掘模型,提出一种音乐推荐算法。实验结果表明,与基于用户的协同过滤算法以及基于项目的协同过滤算法相比,该算法可以更加高效地向用户推荐感兴趣的音乐。 展开更多
关键词 协同过滤 音乐推荐 主题挖掘 latent Dirichlet分配模型 吉布斯抽样 基于lda模型的音乐推荐
在线阅读 下载PDF
一种并行LDA主题模型建立方法研究 被引量:12
12
作者 王旭仁 姚叶鹏 +1 位作者 冉春风 何发镁 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期590-593,共4页
针对潜在狄利克雷分析(LDA)模型分析大规模文档集或语料库中潜藏的主题信息计算时间较长问题,提出基于MapReduce架构的并行LDA主题模型建立方法.利用分布式编程模型研究了LDA主题模型建立方法的并行化实现.通过Hadoop并行计算平台进行... 针对潜在狄利克雷分析(LDA)模型分析大规模文档集或语料库中潜藏的主题信息计算时间较长问题,提出基于MapReduce架构的并行LDA主题模型建立方法.利用分布式编程模型研究了LDA主题模型建立方法的并行化实现.通过Hadoop并行计算平台进行实验的结果表明,该方法在处理大规模文本时,能获得接近线性的加速比,对主题模型的建立效果也有提高. 展开更多
关键词 MapReduce架构 并行计算 潜在狄利克雷分布模型 主题建模
在线阅读 下载PDF
一种词聚类LDA的商品特征提取算法 被引量:12
13
作者 彭云 万常选 +2 位作者 江腾蛟 刘德喜 刘喜平 《小型微型计算机系统》 CSCD 北大核心 2015年第7期1458-1463,共6页
商品评论中经常会使用一些词义近似或上下文相关的中低频词来描述商品特征,如何有效辨识这些中低频词是商品特征抽取的一个难点.由于缺乏先验知识,主题模型难以发现并抽取中低频特征词.提出基于词义相似度和上下文相关度相结合的词聚类... 商品评论中经常会使用一些词义近似或上下文相关的中低频词来描述商品特征,如何有效辨识这些中低频词是商品特征抽取的一个难点.由于缺乏先验知识,主题模型难以发现并抽取中低频特征词.提出基于词义相似度和上下文相关度相结合的词聚类度量算法,在此基础上构建了一种基于词聚类先验知识的潜在狄利克雷分配的商品主题特征提取模型.首先对词项按词义相似度、上下文相关度进行聚类;然后在商品主题特征抽取中引入词聚类因素作为权重影响因子,使得同一个聚类簇中的词项属于同一主题的概率增加.相关实验结果表明,本文提出的词聚类和特征提取算法具有较好的效果. 展开更多
关键词 词聚类 上下文相关 lda模型 特征提取
在线阅读 下载PDF
基于LDA与新兴主题特征分析的新兴主题探测研究 被引量:65
14
作者 范云满 马建霞 《情报学报》 CSSCI 北大核心 2014年第7期698-711,共14页
本文尝试基于LDA主题模型探测文档集中的新兴主题.本文采用主题的新颖度、发文量指标,并引入被引量,得到新兴主题的特征指标,在此基础上对主题在进入成熟阶段前各个时期的特征进行了分析.并提出了针对上述新兴主题探测指标,基于LDA主题... 本文尝试基于LDA主题模型探测文档集中的新兴主题.本文采用主题的新颖度、发文量指标,并引入被引量,得到新兴主题的特征指标,在此基础上对主题在进入成熟阶段前各个时期的特征进行了分析.并提出了针对上述新兴主题探测指标,基于LDA主题模型抽取文档的语义主题词,利用文档-主题矩阵建立主题和文档的映射,得到主题的新颖度指标和发文量指标、被引量指标,并形成新兴主题探测表格和探测曲线VDP,从而探测出新兴主题,并对新兴主题VDP与基线VDP距离的发展趋势进行预测,根据拟合的曲线对其进行分析,得到最值得关注的新兴主题. 展开更多
关键词 隐狄利克雷分布 主题模型 新兴主题 主题特征 新颖度指标 发文量指标 被引量指标 生命周期
在线阅读 下载PDF
基于LDA模型的主题分析 被引量:36
15
作者 石晶 范猛 李万龙 《自动化学报》 EI CSCD 北大核心 2009年第12期1586-1592,共7页
在文本分割的基础上,确定片段主题,进而总结全文的中心主题,使文本的主题脉络呈现出来,主题以词串的形式表示.为了分析准确,利用LDA(Latent dirichlet allocation)为语料库及文本建模,以Clarity度量块间相似性,并通过局部最小值识别片... 在文本分割的基础上,确定片段主题,进而总结全文的中心主题,使文本的主题脉络呈现出来,主题以词串的形式表示.为了分析准确,利用LDA(Latent dirichlet allocation)为语料库及文本建模,以Clarity度量块间相似性,并通过局部最小值识别片段边界.依据词汇的香农信息提取片段主题词,采取背景词汇聚类及主题词联想的方式将主题词扩充到待分析文本之外,尝试挖掘隐藏于字词表面之下的文本内涵.实验表明,文本分析的结果明显好于其他方法,可以为下一步文本推理的工作提供有价值的预处理. 展开更多
关键词 主题分析 lda模型 文本分割 GIBBS抽样
在线阅读 下载PDF
基于LDA主题特征的自动文摘方法 被引量:24
16
作者 张明慧 王红玲 周国栋 《计算机应用与软件》 CSCD 2011年第10期20-22,46,共4页
近年来概率主题模型受到了研究者的广泛关注,LDA(Latent Dirichlet Allocation)模型是主题模型中具有代表性的概率生成模型之一,它能够检测文本的隐含主题。提出一个基于LDA模型的主题特征,该特征计算文档的主题分布与句子主题分布的距... 近年来概率主题模型受到了研究者的广泛关注,LDA(Latent Dirichlet Allocation)模型是主题模型中具有代表性的概率生成模型之一,它能够检测文本的隐含主题。提出一个基于LDA模型的主题特征,该特征计算文档的主题分布与句子主题分布的距离。结合传统多文档自动文摘中的常用特征,计算句子权重,最终根据句子的分值抽取句子形成摘要。实验结果证明,加入LDA模型的主题特征后,自动文摘的性能得到了显著的提高。 展开更多
关键词 自动文摘 lda 主题模型 多文档
在线阅读 下载PDF
基于LDA模型的专利信息聚类技术 被引量:22
17
作者 范宇 符红光 文奕 《计算机应用》 CSCD 北大核心 2013年第A01期87-89,93,共4页
针对传统专利情报采集的方式不能适应专利信息快速增加的问题,通过研究适用于专利信息聚类的主题模型和聚类算法,提出了将潜在狄利克雷分配(LDA)主题模型和OPTICS算法相结合的解决方案。该方案采用LDA主题模型将专利信息在词汇空间的高... 针对传统专利情报采集的方式不能适应专利信息快速增加的问题,通过研究适用于专利信息聚类的主题模型和聚类算法,提出了将潜在狄利克雷分配(LDA)主题模型和OPTICS算法相结合的解决方案。该方案采用LDA主题模型将专利信息在词汇空间的高维表达转换到在主题空间的低维表达,高效地实现了对专利信息的降维,进而采用OPTICS算法及k近邻准则对专利信息进行聚类分析,达到收集感兴趣的专利情报信息的目的。理论分析和实验验证表明,提出的解决方案不仅能通过降维,提高专利聚类效率,而且能对专利信息分析提供帮助。 展开更多
关键词 潜在狄利克雷分配主题模型 聚类分析 OPTICS算法 专利信息聚类 专利分析
在线阅读 下载PDF
基于LDA模型的主题词抽取方法 被引量:49
18
作者 石晶 李万龙 《计算机工程》 CAS CSCD 北大核心 2010年第19期81-83,共3页
以LDA模型表示文本词汇的概率分布,通过香农信息抽取体现主题的关键词。采用背景词汇聚类及主题词联想的方式将主题词扩充到待分析文本之外,尝试挖掘文本的主题内涵。模型拟合基于快速Gibbs抽样算法进行。实验结果表明,快速Gibbs算法的... 以LDA模型表示文本词汇的概率分布,通过香农信息抽取体现主题的关键词。采用背景词汇聚类及主题词联想的方式将主题词扩充到待分析文本之外,尝试挖掘文本的主题内涵。模型拟合基于快速Gibbs抽样算法进行。实验结果表明,快速Gibbs算法的速度约比传统Gibbs算法高5倍,准确率和抽取效率均较高。 展开更多
关键词 lda模型 GIBBS抽样 主题词抽取
在线阅读 下载PDF
一种基于LDA模型的主题句抽取方法 被引量:10
19
作者 王力 李培峰 朱巧明 《计算机工程与应用》 CSCD 2013年第2期160-164,257,共6页
在基于Web的主题关键词查询扩展,获取候选主题句的基础上,提出一种基于LDA模型的主题句抽取方法,以抽取粒度较细的主题信息,并增加主题信息的置信度。该方法通过多个侧面对目标主题的衬托,采用LDA模型对主题信息进行建模,利用各个主题... 在基于Web的主题关键词查询扩展,获取候选主题句的基础上,提出一种基于LDA模型的主题句抽取方法,以抽取粒度较细的主题信息,并增加主题信息的置信度。该方法通过多个侧面对目标主题的衬托,采用LDA模型对主题信息进行建模,利用各个主题概率分布的平滑度进行候选句的可信度计算来抽取主题句。在面向Web的主题句抽取的具体应用中,取得了较好的效果。 展开更多
关键词 隐含狄利克雷分配(lda) 主题模型 主题句抽取 信息融合
在线阅读 下载PDF
基于LDA模型的餐馆评论排序 被引量:8
20
作者 吕韶华 杨亮 林鸿飞 《计算机工程》 CAS CSCD 北大核心 2011年第19期62-64,67,共4页
在餐馆评论中,存在评论文本未明确指出评价等级及评论文本不一致等问题。为此,提出一种基于LDA模型的餐馆评论排序方法。利用LDA模型对评论文本进行主题抽取,过滤掉不相关评论,基于过滤后的用户评论和用户给出的评论等级计算餐馆评论若... 在餐馆评论中,存在评论文本未明确指出评价等级及评论文本不一致等问题。为此,提出一种基于LDA模型的餐馆评论排序方法。利用LDA模型对评论文本进行主题抽取,过滤掉不相关评论,基于过滤后的用户评论和用户给出的评论等级计算餐馆评论若干方面的得分,在该得分的基础上,利用逻辑回归进行训练,得到餐馆评论排序模型。实验结果表明,该方法的排序效果较优。 展开更多
关键词 lda模型 餐馆评论 排序 观点挖掘 逻辑回归
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部