期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
强噪声下基于加窗LASSO的声源定位方法
1
作者 滕繁 蒋三新 《计算机应用与软件》 北大核心 2025年第3期119-126,共8页
传统声源定位方法往往容易受到低信噪比等不利声学条件的影响,难以同时实现定位的准确性与实时性,为此提出一种基于加窗最小绝对收缩选择算子(Least Absolute Shrinkage and Selection Operator,LASSO)的定位方法。采用加窗LASSO对音频... 传统声源定位方法往往容易受到低信噪比等不利声学条件的影响,难以同时实现定位的准确性与实时性,为此提出一种基于加窗最小绝对收缩选择算子(Least Absolute Shrinkage and Selection Operator,LASSO)的定位方法。采用加窗LASSO对音频信号进行稀疏分解来提取所包含的高能暂态与稳态成分,利用两者进行SRP-PHAT计算,实现目标声源的空间定位。实验结果表明,该方法可以有效抑制环境噪声,将定位误差保持在±10°左右;减小计算复杂度,将每帧的定位时间降低到1 s以下。 展开更多
关键词 结构稀疏分解 相位变换加权的可控功率响应 最小绝对收缩选择算子 强噪声
在线阅读 下载PDF
基于LASSO回归的宁夏回族自治区不同学段儿童青少年近视影响因素分析 被引量:5
2
作者 谢小莲 陈启 +4 位作者 李静 马娟 王飞 赵海萍 曹娟 《眼科新进展》 CAS 北大核心 2024年第7期549-553,共5页
目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4... 目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4所大学的学生为研究对象,小学每个年级抽取5个班级,初中至大学每个年级抽取4个班级,以抽取班级的全体学生作为研究对象,共抽取学生14211人,对其进行问卷调查、体格检查和视力测量。不同学段儿童近视的影响因素采用最小绝对收缩和选择算子(LASSO)联合Logistic回归进行分析,选择贝叶斯信息准则(Bayesian information criterion,BIC)最小的模型为最优模型。结果宁夏回族自治区儿童青少年近视检出率为70.3%,女生高于男生,城市高于乡镇,差异均有统计学意义(均为P<0.001);按学段分层后,随着年级的增加,近视检出率随之升高,小学最低,大学最高,不同学段近视检出率差异有统计学意义(P<0.001)。近视影响因素的LASSO-Logistic回归分析表明,城乡、性别、年龄、目前是否配戴眼镜、每日课间操节数、是否积极参加体力活动和过去6个月是否保持规律活动是小学生近视的影响因素(均为P<0.05);性别、目前是否配戴眼镜是初中生和高中生近视的影响因素(均为P<0.05);目前是否配戴眼镜是大学生近视的影响因素(P<0.05)。结论宁夏回族自治区儿童青少年近视检出率高,不同学段儿童青少年近视影响因素差异明显。配戴眼镜是控制近视的保护因素。应根据儿童青少年所处学段开展有针对性的视力相关知识的健康教育,增强其健康保健意识,提高儿童青少年视力。 展开更多
关键词 近视 学段 儿童青少年 lasso回归
在线阅读 下载PDF
Discrimination of Acori Tatarinowii Rhizoma from two habitats based on GC-MS fingerprinting and LASSO-PLS-DA 被引量:4
3
作者 马莎莎 张冰洋 +3 位作者 陈练 章晓娟 任达兵 易伦朝 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1063-1075,共13页
This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) w... This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) was applied to establishing the quantitative chemical fingerprints of ATRs. A total of 104 volatile compounds were identified and quantified with the information of mass spectra and retention index (RI). Furthermore, least absolute shrinkage and selection operator (LASSO), a sparse regularization method, combined with subsampling was employed to improve the classification ability of partial least squares-discriminant analysis (PLS-DA). After variable selection by LASSO, three chemical markers,β-elemene, α-selinene and α-asarone, were identified for the discrimination of ATRs from two habitats, and the total classification correct rate was increased from 82.76% to 96.55%. The proposed LASSO-PLS-DA method can serve as an efficient strategy for screening marked chemical components and geo-herbalism research of traditional Chinese medicines. 展开更多
关键词 Acori Tatarinowii Rhizoma gas chromatography-mass spectrometry least absolute shrinkage and selection operator lasso partial least squares-discriminant analysis
在线阅读 下载PDF
高尿酸血症与慢性肺源性心脏病的相关性研究:基于LASSO回归与倾向性评分匹配法
4
作者 祁海燕 王捷 +1 位作者 罗玉玺 武云 《中国全科医学》 CAS 北大核心 2024年第24期2954-2960,2968,共8页
背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新... 背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新疆医科大学第一附属医院收治的1171例慢性阻塞性肺疾病(COPD)患者为研究对象,根据其是否患有CPHD分为CPHD组(470例)和COPD组(701例)。收集患者一般资料和实验室检查及超声心动图检查结果。采用LASSO回归法对变量进行筛选,采用倾向性评分匹配法(PSM)排除混杂因素影响。采用多因素Logistic回归分析探究COPD患者合并CPHD的影响因素。结果CPHD组女性、汉族、吸烟、饮酒、特发性肺纤维化、慢性支气管炎、支气管哮喘比例、淋巴细胞百分比、左心室舒张末期内径、左心室收缩末期内径、心输出量、左心室射血分数低于COPD组,心功能3~4级、HUA、肺栓塞、先天性心脏病比例、红细胞计数、中性粒细胞百分比、SUA、血尿素氮、D-二聚体、N末端-B型利钠肽前体、右心房内径、右心室内径、左心房内径、右心室流出道内径、肺动脉内径高于COPD组,差异有统计学意义(P<0.05)。LASSO回归筛选出变量后进行PSM,最终得到COPD组469例、CPHD组469例。匹配后CPHD组心功能3~4级、HUA占比、右心房内径、右心室内径、右心室流出道内径、肺动脉内径大于COPD组,支气管哮喘、淋巴细胞百分比低于COPD组,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,HUA升高、心功能3~4级、右心房内径、右心室内径、肺动脉内径增加是COPD患者合并CPHD的危险因素(P<0.05),患有支气管哮喘、左心室舒张末期内径增加为COPD患者合并CPHD的保护因素(P<0.05)。将SUA水平按四分位数分层,多因素Logistic回归分析结果显示,与Q1(SUA<237.31μmol/L)比较,Q4(SUA>381.29μmol/L)患者患有CPHD的风险增加1.421倍。结论HUA是CPHD疾病发生、发展的影响因素,积极控制SUA水平有助于预防CPHD的发生、发展。 展开更多
关键词 肺心病 高尿酸血症 肺疾病 慢性阻塞性 病例对照研究 最小绝对收缩和选择算法 倾向性评分
在线阅读 下载PDF
基于LASSO-SVM的软件缺陷预测模型研究 被引量:16
5
作者 吴晓萍 赵学靖 +2 位作者 乔辉 刘东梅 王志 《计算机应用研究》 CSCD 北大核心 2013年第9期2748-2751,2754,共5页
针对当前大多数软件缺陷预测模型预测准确率较差的问题,提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度,去除了与软件缺陷预测不相关... 针对当前大多数软件缺陷预测模型预测准确率较差的问题,提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度,去除了与软件缺陷预测不相关的数据集;然后利用交叉验证算法的参数寻优能力找到支持向量机的最优相关参数;最后运用支持向量机的非线性运算能力完成了软件缺陷预测。仿真实验结果表明,所提出的缺陷预测模型与传统的缺陷预测模型相比具有较高的预测准确率,且预测速度更快。 展开更多
关键词 软件缺陷预测 最小绝对值压缩与选择方法 特征选择 支持向量机 交叉验证
在线阅读 下载PDF
针对Lasso问题的多维权重求解算法 被引量:8
6
作者 陈善雄 刘小娟 +1 位作者 陈春蓉 郑方园 《计算机应用》 CSCD 北大核心 2017年第6期1674-1679,共6页
最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占... 最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占权重不同,即此属性变量在整体评价中的相对重要程度不同,故在LARS算法计算角分线时,将各回归变量与剩余变量的联合相关度纳入考虑,用来区分不同属性变量对检测结果的影响;然后在LARS算法中加入主成分分析(PCA)、独立权数法、基于Intercriteria相关性的指标的重要度评价(CRITIC)法这三种权重估计方法,并进一步对LARS求解的前进方向和前进变量选择进行优化。最后使用Pima Indians Diabetes数据集验证算法的优良性。实验结果表明,在更小阈值的约束条件下,加入多维权重后的LARS算法对Lasso问题的解具有更高的准确度,能更好地用于异常检测。 展开更多
关键词 最小绝对收缩和选择算子 变量选择 最小角回归 多元线性回归 加权
在线阅读 下载PDF
基于自适应稀疏宽度学习系统的软测量建模
7
作者 杜康萍 隋璘 熊伟丽 《系统仿真学报》 北大核心 2025年第6期1449-1461,共13页
针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection ope... 针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection operator)对网络特征权重进行优化,根据不同变量间的相关性自适应调整惩罚强度,提高模型特征提取能力;在增强节点部分引入Dropout机制,利用LASSO求解输出权重,对模型整体进行稀疏优化,剔除过量节点,减少计算过程中的冗余数据。实验结果表明:该方法能有效简化模型结构,提高其预测性能。 展开更多
关键词 软测量 宽度学习系统 lasso(least absolute shrinkage and selection operator) 正则化 稀疏模型
在线阅读 下载PDF
微阵列数据中的先验信息对基于LASSO变量选择方法影响的模拟研究 被引量:3
8
作者 陈江鹏 彭斌 +3 位作者 文雯 唐小静 文小焱 胡珊 《中国卫生统计》 CSCD 北大核心 2015年第3期407-409,413,共4页
目的探讨微阵列数据中的先验信息对基于LASSO变量选择方法的影响。方法设置真实模型后,逐步融合先验信息,采用R、MATLAB软件编程,模拟比较先验信息对LASSO,group LASSO(简称为g LASSO)中的non-overlap group LASSO(简称为nog LASSO)和ov... 目的探讨微阵列数据中的先验信息对基于LASSO变量选择方法的影响。方法设置真实模型后,逐步融合先验信息,采用R、MATLAB软件编程,模拟比较先验信息对LASSO,group LASSO(简称为g LASSO)中的non-overlap group LASSO(简称为nog LASSO)和overlap group LASSO(简称为og LASSO)变量选择的影响。结果经典的LASSO、og LASSO变量选择方法在处理模拟微阵列数据时具有较好的预测精度(AUCLASSO=0.8915≈AUCog LASSO=0.8923>AUCnog LASSO=0.8396,MSEnog LASSO=0.1358>MSEog LASSO=0.0975≈MSELASSO=0.0928),LASSO可解释性最强(平均入选模型基因数分别为21.52、111.95、101.01)。nog LASSO在处理基因通路信息时,当[X295]被错分至第19个通路后,尽管未改变其效应值,但入选模型次数大为减少,预测精度下降较为明显,而og LASSO表现更稳健。结论融合微阵列数据中的先验信息并未提高基于LASSO变量选择方法的预测性能及效率,经典的LASSO变量选择方法仍为处理微阵列数据的有效方法。 展开更多
关键词 变量选择 lasso算法 模拟
在线阅读 下载PDF
轨迹优化的LASSO网格自适应加密方法 被引量:5
9
作者 张松 侯明善 《系统工程与电子技术》 EI CSCD 北大核心 2016年第5期1195-1200,共6页
针对轨迹优化直接方法,提出了以控制变量曲率为基础的最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)网格自适应加密策略,用于提高优化精度。以高分辨率二分网格节点为中心,构造径向基函数逼近控制曲... 针对轨迹优化直接方法,提出了以控制变量曲率为基础的最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)网格自适应加密策略,用于提高优化精度。以高分辨率二分网格节点为中心,构造径向基函数逼近控制曲线,利用LASSO方法估计径向基函数系数,并自动筛选出位于控制曲线曲率极大区间的高分辨率节点加密当前网格。本文方法不需要进行状态和控制误差估计,适应性和通用性强。两组典型算例验证了方法的有效性。 展开更多
关键词 轨迹优化 网格加密 最小绝对收缩与选择 径向基函数
在线阅读 下载PDF
基于在线LASSO VAR和EGARCH模型的风场功率集成概率预测 被引量:4
10
作者 王鹏 李艳婷 张宇 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第7期845-858,共14页
由于风速波动性大,风力发电往往呈现一定的不确定性.传统风能预测模型以均值为0、方差固定的正态分布度量不确定性,但方差可能随时间变化,即具有异方差性.为提升预测精度,基于在线最小绝对收缩和选择算子的向量自回归(LASSO VAR)和指数... 由于风速波动性大,风力发电往往呈现一定的不确定性.传统风能预测模型以均值为0、方差固定的正态分布度量不确定性,但方差可能随时间变化,即具有异方差性.为提升预测精度,基于在线最小绝对收缩和选择算子的向量自回归(LASSO VAR)和指数自回归条件异方差(EGARCH)模型,提出一种考虑异方差性的风场级功率集成概率预测模型.首先使用在线LASSO VAR模型预测风力机的有功功率,再利用自回归条件异方差检验验证残差的异方差性,并利用信息冲击曲线和动态显著线评估正负残差对未来条件方差的不对称影响.然后针对异方差性和不对称性,使用EGARCH模型对单风力机有功功率的残差进行预测,得到有功功率的条件方差.最后,考虑各风力机有功功率的相关性,将风场中各风力机的有功功率求和,得到整个风场总有功功率的概率预测结果.将该方法应用于中国华东某地风场,验证了该模型能有效提高预测精度. 展开更多
关键词 在线lasso VAR 异方差 指数条件异方差模型 概率预测
在线阅读 下载PDF
基于Lasso的稀疏微波成像分块成像原理与方法研究(英文) 被引量:1
11
作者 向寅 张冰尘 洪文 《雷达学报(中英文)》 CSCD 2013年第3期271-277,共7页
稀疏微波成像需要使用相对复杂的非线性处理方法,这些方法难于处理大场景成像问题,为此,该文提出了一种适用于大场景稀疏微波成像的分块成像方法。该方法首先将大场景观测数据和成像区域分割成一一对应的子数据块和子区域,然后利用基于L... 稀疏微波成像需要使用相对复杂的非线性处理方法,这些方法难于处理大场景成像问题,为此,该文提出了一种适用于大场景稀疏微波成像的分块成像方法。该方法首先将大场景观测数据和成像区域分割成一一对应的子数据块和子区域,然后利用基于Lasso的稀疏微波成像方法对各子区域独立重建,最后拼接子区域重建结果得到大场景整体图像。相比于对稀疏观测场景进行整体重建,该分块处理方法可以控制每次重建所涉及的数据量,同时理论分析表明分块处理稀疏场景重建误差不超过整体重建误差上界的两倍。数值仿真及实测数据处理结果验证了该分块处理方法的有效性。 展开更多
关键词 微波成像 稀疏信号处理 稀疏微波成像 lasso 分块成像
在线阅读 下载PDF
基于Lasso和构造性覆盖算法的不均衡数据分类方法 被引量:3
12
作者 蒋溢 伍书平 +1 位作者 胡昆 龙林波 《计算机应用》 CSCD 北大核心 2023年第4期1086-1093,共8页
针对机器学习分类算法在不均衡数据分类问题中对少数类样本识别能力不足的问题,以电信客户流失场景为例,提出一种不均衡数据分类方法 L-CCSmote(Lasso Constructive Covering Smote)。首先,通过套索回归(Lasso)提取流失用户特征以优化... 针对机器学习分类算法在不均衡数据分类问题中对少数类样本识别能力不足的问题,以电信客户流失场景为例,提出一种不均衡数据分类方法 L-CCSmote(Lasso Constructive Covering Smote)。首先,通过套索回归(Lasso)提取流失用户特征以优化模型输入;然后,通过构造性覆盖算法(CCA)建立神经网络生成符合样本整体分布的覆盖;最后,进一步提出单样本覆盖策略、样本多样性策略和样本密度峰值策略,通过以上策略混合采样以平衡数据。选用了KEEL数据库中的13个不均衡数据集和2个脱敏电信客户数据集,分别在逻辑回归(LR)和支持向量机(SVM)分类算法上对该方法进行验证。在LR分类算法上,与SMOTE-Enn(Synthetic Minority Oversampling TEchnique Edited nearest neighbor)相比,所提方法的平均几何平均值(G-MEAN)提升了2.32%;在SVM分类算法上,与Borderline-SMOTE(Borderline Synthetic Minority Oversampling Technique Edited)相比,所提方法的平均G-MEAN提升了2.44%。实验结果表明,所提方法能解决类别偏斜分布影响分类的问题,且对于稀有类的识别能力优于经典平衡数据方法。 展开更多
关键词 lasso 构造性覆盖算法 不均衡数据分类 客户流失预测 混合采样
在线阅读 下载PDF
基于LASSO-ISAPSO-ELM的含蜡原油管道蜡沉积速率预测 被引量:5
13
作者 骆正山 潘柯成 《安全与环境工程》 CAS CSCD 北大核心 2022年第6期69-77,共9页
为提高含蜡原油管道蜡沉积速率的预测精度,保障含蜡原油管道安全运行,提出一种基于套索算法(LASSO)和改进模拟退火粒子群算法(ISAPSO)融合极限学习机(ELM)的含蜡原油管道蜡沉积速率预测模型。首先利用LASSO提取含蜡原油管道蜡沉积速率... 为提高含蜡原油管道蜡沉积速率的预测精度,保障含蜡原油管道安全运行,提出一种基于套索算法(LASSO)和改进模拟退火粒子群算法(ISAPSO)融合极限学习机(ELM)的含蜡原油管道蜡沉积速率预测模型。首先利用LASSO提取含蜡原油管道蜡沉积速率的关键影响因素,简化样本指标;然后对模拟退火粒子群(SAPSO)的种群初始化、惯性权重和学习因子进行改进,并利用其优化ELM的输入权重和隐含层节点阈值;最后以青海某厂原油为试验油样,通过开展室内环道试验获取85组数据样本,将预处理后的样本数据集代入模型计算,对含蜡原油管道蜡沉积速率进行预测,并将LASSO-ISAPSO-ELM模型的预测结果与BPNN模型和PSO-SVM模型的预测结果进行对比。结果表明:经LASSO筛选,得到5项影响含蜡原油管道蜡沉积速率的关键因素;ISAPSO比SAPSO提前43代收敛且寻优精度更优;LASSO-ISAPSO-ELM模型预测结果的均方根误差、平均相对误差和希尔不等系数分别低达0.06983、0.69373%、0.00336,与其他模型相比,LASSO-ISAPSO-ELM模型的预测精度更高。 展开更多
关键词 含蜡原油管道 蜡沉积速率 套索算法(lasso) 改进模拟退火粒子群算法(ISAPSO) 极限学习机(ELM)
在线阅读 下载PDF
套索回归在配电网谐波源定位的应用
14
作者 程宏波 万紫彤 +2 位作者 李宗伟 蔡木良 辛建波 《电力系统及其自动化学报》 北大核心 2025年第3期59-65,共7页
为实现配电网谐波源定位欠定方程组的准确求解,提出用套索回归实现配电网谐波源定位。套索回归通过引入惩罚项,对无谐波源的节点电流进行压缩,以降低方程组的欠定程度。以残差平方和最小为目标对节点的谐波电流进行估计,得到配电网谐波... 为实现配电网谐波源定位欠定方程组的准确求解,提出用套索回归实现配电网谐波源定位。套索回归通过引入惩罚项,对无谐波源的节点电流进行压缩,以降低方程组的欠定程度。以残差平方和最小为目标对节点的谐波电流进行估计,得到配电网谐波源定位稀疏方程的最优解,根据求解的谐波电流判断谐波源的位置,并利用IEEE33节点系统进行仿真验证。结果表明,本文方法可准确确定谐波源位置,与最小二乘法和岭回归及正交匹配相比,本文方法求解结果的误差更小、精度更高,当量测点数量越少时,本文方法的优势越明显。因此,本文方法估计结果准确,抗干扰能力强。 展开更多
关键词 谐波源 欠定方程 套索回归 谐波状态估计 惩罚系数
在线阅读 下载PDF
惩罚逻辑回归预测航班延误问题
15
作者 陈伟 霍群 《计算机应用》 北大核心 2025年第S1期194-197,共4页
针对传统统计方法和机器学习技术在处理多重共线性数据时的局限性,探究惩罚逻辑回归(PLR)在航班延误预测中的有效性。首先,回顾航班延误的背景及现状,并分析现有的相关研究所面临的挑战;其次,介绍逻辑回归及其3种惩罚形式(LASSO、L2和... 针对传统统计方法和机器学习技术在处理多重共线性数据时的局限性,探究惩罚逻辑回归(PLR)在航班延误预测中的有效性。首先,回顾航班延误的背景及现状,并分析现有的相关研究所面临的挑战;其次,介绍逻辑回归及其3种惩罚形式(LASSO、L2和弹性网(EN))的理论基础,并探讨它们在航班延误分析中的应用潜力;最后,为了验证PLR方法的有效性,利用真实航班数据进行实验分析。实验结果表明,PLR有效地解决了航班数据中的多重共线性问题,且预测准确度有显著提升。其中,L2-PLR模型的运行最快,LASSO-PLR模型在预测精度上表现最佳,弹性网惩罚逻辑回归(EN-PLR)模型则在运行速度和预测精度之间达到平衡。 展开更多
关键词 航班延误 惩罚逻辑回归 lasso惩罚 L2惩罚 弹性网惩罚
在线阅读 下载PDF
基于增量学习和Lasso融合的数据可视化模式识别方法 被引量:4
16
作者 梁怀新 郝连旺 +2 位作者 宋佳霖 郑存芳 洪文学 《高技术通讯》 EI CAS 北大核心 2018年第1期39-51,共13页
提出了一种基于增量学习和最小绝对值收缩和选择算子(Lasso)特征选择融合的数据可视化模式识别方法。该方法首先对归一化数据进行一级Lasso筛选特征降维,之后对连续数据进行基于Gini指数的粒化,再送入增量模式学习系统进行增量学习,针... 提出了一种基于增量学习和最小绝对值收缩和选择算子(Lasso)特征选择融合的数据可视化模式识别方法。该方法首先对归一化数据进行一级Lasso筛选特征降维,之后对连续数据进行基于Gini指数的粒化,再送入增量模式学习系统进行增量学习,针对维数大量升高的情况进行Lasso二级特征筛选生成一致模式决策表,生成属性偏序结构图可视化规则发现。数据采用来自UCI的5个数据库,并与分类器KNN,SVM,Adaboost,Random Forest进行分类准确度比较,实验表明,基于该算法的分类精度普遍高于其他分类器水平,且属性偏序结构图可视化层次清晰鲜明。通过增量学习实验设计,得到了准确率、图结构更新和不同比例增量数据的动态关系,其中Pima Indians Diabetes数据学习达到40%时准确率(77.66%)超过Adaboost(75.32%)、SVM(77.27%)、1NN(59.74%)、3NN(75.97%)算法。结果表明该算法进行数据的可视化和模式识别是行之有效的。 展开更多
关键词 增量学习 最小绝对值收缩和选择算子(lasso) 属性偏序结构图 可视化 模式识别 粒化
在线阅读 下载PDF
基于LASSO算法的光谱变量选择方法研究 被引量:9
17
作者 王恺怡 杨盛 +1 位作者 郭彩云 卞希慧 《分析测试学报》 CAS CSCD 北大核心 2022年第3期398-402,408,共6页
光谱分析技术由于具有简单、快速、无损等优势,在复杂体系的定性和定量分析中得到了广泛应用。然而光谱中往往包含成百上千的波长点,有些波长点与研究的目标性质并不相关,加大了计算量并降低了模型的预测准确度。因此,在建立模型前需要... 光谱分析技术由于具有简单、快速、无损等优势,在复杂体系的定性和定量分析中得到了广泛应用。然而光谱中往往包含成百上千的波长点,有些波长点与研究的目标性质并不相关,加大了计算量并降低了模型的预测准确度。因此,在建立模型前需要进行变量选择。最小绝对收缩与选择算子(LASSO)可将回归系数收缩为0,进而达到变量选择的目的。该研究将LASSO用于三元调和油样品近红外光谱和生物样品拉曼光谱的变量选择,基于偏最小二乘(PLS)和多元线性回归(MLR)模型,分别对香油和肌氨酸的含量进行定量分析,并与无信息变量消除-PLS(UVE-PLS)、蒙特卡罗结合UVE-PLS(MCUVE-PLS)和随机检验-PLS(RT-PLS)3种变量选择方法进行比较。结果表明,基于LASSO的变量选择方法保留的变量数最少,运算速度最快。对三元调和油样品,LASSO-PLS预测的准确度最高;对生物样品,LASSO-MLR预测的准确度最高。因此,基于LASSO的变量选择算法有望在光谱分析领域中得到良好应用。 展开更多
关键词 多元校正 变量选择 最小绝对收缩与选择算子(lasso) 光谱分析
在线阅读 下载PDF
基于sparse group Lasso方法的脑功能超网络构建与特征融合分析 被引量:7
18
作者 李瑶 赵云芃 +3 位作者 李欣芸 刘志芬 陈俊杰 郭浩 《计算机应用》 CSCD 北大核心 2020年第1期62-70,共9页
功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题... 功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题,引入sparse group Lasso(sgLasso)方法进一步改善超网络的创建。首先,利用sgLasso方法进行超网络创建;然后,引入两组超网络特有的属性指标进行特征提取以及特征选择,这些指标分别是基于单一节点的聚类系数和基于一对节点的聚类系数;最后,将特征选择后得到的两组有显著差异的特征通过多核学习进行特征融合和分类。实验结果表明,所提方法经过多特征融合取得了87.88%的分类准确率。该结果表明为了改善脑功能超网络的创建,需要考虑到组信息,但不能逼迫使用整组信息,可以适当地对组结构进行扩展。 展开更多
关键词 超网络 SPARSE GROUP lasso 基于一对节点的聚类系数 多核学习 抑郁症 机器学习
在线阅读 下载PDF
一种利用Screening加速技巧的Lasso算法
19
作者 邱俊洋 潘志松 +2 位作者 易磊 陶蔚 张梁梁 《计算机工程与应用》 CSCD 北大核心 2018年第4期135-140,共6页
Lasso(Least absolute shrinkage and selection operator)是目前广为应用的一种稀疏特征选择算法。经典的Lasso算法通过对高维数据进行特征选择一定程度上降低了计算开销,然而,求解Lasso问题目前仍面临诸多困难与挑战,例如当特征维数... Lasso(Least absolute shrinkage and selection operator)是目前广为应用的一种稀疏特征选择算法。经典的Lasso算法通过对高维数据进行特征选择一定程度上降低了计算开销,然而,求解Lasso问题目前仍面临诸多困难与挑战,例如当特征维数和样本数量非常大时,甚至无法将数据矩阵加载到主存储器中。为了应对这一挑战,Screening加速技巧成为近年来研究的热点。Screening可以在问题优化求解之前将稀疏优化结果中系数必然为0的无效特征筛选出来并剔除,从而极大地降低数据维度,在不损失问题求解精度的前提下,加速稀疏优化问题的求解速度。首先推导了Lasso的对偶问题,根据对偶问题的特性得出基于对偶多面投影的Screening加速技巧,最后将Screening加速技巧引入Lasso特征选择算法,并在多个高维数据集上进行实验,通过加速比、识别率以及算法运行时间三个指标验证了Screening加速技巧在Lasso算法上的良好性能。 展开更多
关键词 lasso算法 Screening加速技巧 稀疏特征选择 高维数据
在线阅读 下载PDF
多传感器信息融合的轴承故障迁移诊断方法 被引量:4
20
作者 包从望 江伟 +1 位作者 张彩红 周大帅 《机电工程》 CAS 北大核心 2024年第5期878-885,共8页
在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合... 在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合传感器的通道数,构建了堆叠卷积神经网络(MCNNs)提取各个通道的故障特征;然后,在MCNNs中引入最小绝对收缩与选择算子(Lasso),并通过网络反向传播完成了特征权值的更新,从而获得了多通道特征的融合;最后,利用源域数据对模型进行了训练,提取了故障特征,并完成了特征融合,采用损失函数完成了模型参数的优化,将源域训练得到的模型结果作为目标域的初始模型,利用目标域样本对初始模型的参数进行了微调,从而完成了模型迁移;并进行了信息融合效果、方法对比以及传感器信息采集属性的性能实验。研究结果表明:传感器的安装位置对信息融合影响较大,MCNNs+Lasso方法具有较好的特征融合效果,平均迁移诊断精度为99.03%,部分精度可达99.97%,在多个变工况的迁移任务中表现出较高迁移精度和良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 多传感器信息融合 堆叠卷积神经网络 最小绝对收缩与选择算子 迁移学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部