自主机器人定位中,从激光雷达扫描数据提取出精确的环境特征将能大幅提高即时定位与构图(Simultaneous localization and mapping,SLAM)技术中匹配的速度。目前,特征提取算法大多采用迭代计算的方法,计算复杂度高,计算量较大。针对此问...自主机器人定位中,从激光雷达扫描数据提取出精确的环境特征将能大幅提高即时定位与构图(Simultaneous localization and mapping,SLAM)技术中匹配的速度。目前,特征提取算法大多采用迭代计算的方法,计算复杂度高,计算量较大。针对此问题,提出了一种角点特征的提取方法。该方法避免了迭代计算,通过角点定位对分割结果进行修正,在保证精度的前提下,使用两点拟合直线代替了最小二乘法。首先,使用激光雷达获得的扫描点对应矢径长度和角度,计算相邻点的斜率差,对点集进行初始分割。然后,计算分割后每部分点集对应线段的斜率,对过分割的点集进行合并。最后,通过计算相邻两直线的交点对角点特征进行定位和提取。通过实验验证,该算法能够准确地提取出数据帧中的角点特征,并且具有较好的位置精度和计算效率。展开更多
针对智能巡检方法难以有效应对复杂环境而导致巡检效率低下、漏检率高的问题,提出智能机器人巡检油气管道异常状态激光点云定位预警方法。设计智能巡检机器人,包括机械摇臂、密封舱和框架结构模块。采用3维激光扫描仪收集管道数据,3维...针对智能巡检方法难以有效应对复杂环境而导致巡检效率低下、漏检率高的问题,提出智能机器人巡检油气管道异常状态激光点云定位预警方法。设计智能巡检机器人,包括机械摇臂、密封舱和框架结构模块。采用3维激光扫描仪收集管道数据,3维激光同时定位与地图构建(simultaneous localization and mapping,SLAM)技术中激光雷达里程计与建图系统(lightweight and ground-optimized lidar odometry and mapping,LeGO-LOAM)算法进行改进,实现机器人同步定位与建图,结合卷积神经网络评估管道状态并预警定级。实验结果表明,该方法能准确检测管道防腐层状况、裂缝和变形等异常,检测数量与实际一致,巡检率、预警率超99.8%,漏检率和虚警率低于0.3%,路径规划高效,整体巡检性能优异。展开更多
针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimize...针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。展开更多
针对Cartographer算法在激光雷达的数据处理中存在的点云特征丢失的问题和低帧率激光雷达导致的运动畸变问题,提出一种改进激光同步定位与地图构建(simultaneous localization and mapping, SLAM)算法。采用k邻域搜索邻近点降采样的体...针对Cartographer算法在激光雷达的数据处理中存在的点云特征丢失的问题和低帧率激光雷达导致的运动畸变问题,提出一种改进激光同步定位与地图构建(simultaneous localization and mapping, SLAM)算法。采用k邻域搜索邻近点降采样的体素滤波方法代替Cartographer算法中的传统体素滤波方法,在不丢失点云特征的情况下提升计算速率;嵌入轮式里程计辅助模块去除激光雷达运动畸变,减少机器人的位姿累积误差,从而改善建图效果;最后,增加了边约束条件改善回环检测效果。通过在机器人操作系统中的gazebo搭建仿真环境进行模拟实验,对比两种算法,实验结果显示改进算法的建图轨迹误差更小。展开更多
文摘自主机器人定位中,从激光雷达扫描数据提取出精确的环境特征将能大幅提高即时定位与构图(Simultaneous localization and mapping,SLAM)技术中匹配的速度。目前,特征提取算法大多采用迭代计算的方法,计算复杂度高,计算量较大。针对此问题,提出了一种角点特征的提取方法。该方法避免了迭代计算,通过角点定位对分割结果进行修正,在保证精度的前提下,使用两点拟合直线代替了最小二乘法。首先,使用激光雷达获得的扫描点对应矢径长度和角度,计算相邻点的斜率差,对点集进行初始分割。然后,计算分割后每部分点集对应线段的斜率,对过分割的点集进行合并。最后,通过计算相邻两直线的交点对角点特征进行定位和提取。通过实验验证,该算法能够准确地提取出数据帧中的角点特征,并且具有较好的位置精度和计算效率。
文摘针对智能巡检方法难以有效应对复杂环境而导致巡检效率低下、漏检率高的问题,提出智能机器人巡检油气管道异常状态激光点云定位预警方法。设计智能巡检机器人,包括机械摇臂、密封舱和框架结构模块。采用3维激光扫描仪收集管道数据,3维激光同时定位与地图构建(simultaneous localization and mapping,SLAM)技术中激光雷达里程计与建图系统(lightweight and ground-optimized lidar odometry and mapping,LeGO-LOAM)算法进行改进,实现机器人同步定位与建图,结合卷积神经网络评估管道状态并预警定级。实验结果表明,该方法能准确检测管道防腐层状况、裂缝和变形等异常,检测数量与实际一致,巡检率、预警率超99.8%,漏检率和虚警率低于0.3%,路径规划高效,整体巡检性能优异。
文摘针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。
文摘针对Cartographer算法在激光雷达的数据处理中存在的点云特征丢失的问题和低帧率激光雷达导致的运动畸变问题,提出一种改进激光同步定位与地图构建(simultaneous localization and mapping, SLAM)算法。采用k邻域搜索邻近点降采样的体素滤波方法代替Cartographer算法中的传统体素滤波方法,在不丢失点云特征的情况下提升计算速率;嵌入轮式里程计辅助模块去除激光雷达运动畸变,减少机器人的位姿累积误差,从而改善建图效果;最后,增加了边约束条件改善回环检测效果。通过在机器人操作系统中的gazebo搭建仿真环境进行模拟实验,对比两种算法,实验结果显示改进算法的建图轨迹误差更小。