期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
流形上的Laplacian半监督回归 被引量:15
1
作者 杨剑 王珏 钟宁 《计算机研究与发展》 EI CSCD 北大核心 2007年第7期1121-1127,共7页
把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体... 把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体给出了线性ε-不敏感损失函数,二次ε-不敏感损失函数和Huber损失函数的Laplacian半监督回归算法,在模拟数据和Boston Housing数据上对算法进行了实验,并对实验结果进行了分析.这些结果将为进一步深入研究半监督流形回归问题提供一些可借鉴的积累. 展开更多
关键词 流形学习 监督学习 正则化 laplacian半监督回归
在线阅读 下载PDF
基于高光谱结合半监督回归的肴肉硫代巴比妥酸反应物的测定
2
作者 赵丽娜 沈烨 +5 位作者 商显文 陈智扬 石吉勇 李志华 黄晓玮 郑开逸 《分析测试学报》 北大核心 2025年第4期708-713,共6页
该文以肴肉的硫代巴比妥酸反应物(TBARS)为新鲜度指标,通过高光谱结合半监督学习进行预测。在数据集中,高光谱数据为X,TBARS含量数据为y值。同时,将整个样本集合分为校正集、验证集、独立测试集。其中,校正集用于建立模型,以预测验证集... 该文以肴肉的硫代巴比妥酸反应物(TBARS)为新鲜度指标,通过高光谱结合半监督学习进行预测。在数据集中,高光谱数据为X,TBARS含量数据为y值。同时,将整个样本集合分为校正集、验证集、独立测试集。其中,校正集用于建立模型,以预测验证集和独立测试集。在校正集中,既有X,又有y的样本称为有标样本;而仅有X,没有y的样本称为无标样本。验证集和独立测试集中的每一个样本均为有标样本。验证集仅用于调节校正集建立模型的参数,不参与建模。独立测试集则不参与建模也不参与调节参数,仅用于测试模型最终的结果。文中校正集样本数为233,其中有标样本48个,无标样本185个;验证集和独立测试集样本数均为12。在建模过程中,先用校正集中的有标样本建立X和y的模型;然后用此模型预测无标样本,预估其y值。此时,校正集中所有样本均为有标样本。最后,基于校正集中的所有样本建模,构建模型用于预测。所构建的两种模型的参数存在差异,均通过验证集进行优化。结果显示:支持向量机回归(SVR)的建模效果较好,同时,SVR算法结合半监督学习可以获得较高的预测精度。在无标样本的选择中,相比基于全部无标样本的方法,基于距离法选择的无标样本可以获得更低的预测误差。 展开更多
关键词 肴肉 硫代巴比妥酸反应物(TBARS) 监督回归 高光谱 支持向量机回归(SVR) 高斯过程回归(GPR)
在线阅读 下载PDF
代价敏感的半监督Laplacian支持向量机 被引量:14
3
作者 万建武 杨明 陈银娟 《电子学报》 EI CAS CSCD 北大核心 2012年第7期1410-1415,共6页
代价敏感学习是机器学习领域的一个研究热点.在实际应用中,数据集往往是不平衡的,存在着大量的无标签样本,只有少量的有标签样本,并且存在噪声.虽然针对该情况的代价敏感学习方法的研究已取得了一定的进展,但还需要进一步的深入研究.为... 代价敏感学习是机器学习领域的一个研究热点.在实际应用中,数据集往往是不平衡的,存在着大量的无标签样本,只有少量的有标签样本,并且存在噪声.虽然针对该情况的代价敏感学习方法的研究已取得了一定的进展,但还需要进一步的深入研究.为此,本文提出了一种基于代价敏感的半监督Laplacian支持向量机.该模型在采用无标签扩展策略的基础上,将考虑了数据不平衡的错分代价融入到Laplacian支持向量机的经验损失和Laplacian正则化项中.考虑到噪声样本对决策平面的影响,本文定义了一种样本依赖的代价,对噪声样本赋予较低的权重.在7个UCI数据集和8个NASA软件数据集上的实验结果表明了本文算法的有效性. 展开更多
关键词 代价敏感学习 监督学习 laplacian支持向量机
在线阅读 下载PDF
图Laplacian半监督特征加权用于高光谱波段选择 被引量:3
4
作者 黄睿 陈玲 《应用科学学报》 EI CAS CSCD 北大核心 2011年第6期626-630,共5页
提出一种利用图Laplacian实现半监督波段选择的方法.该方法首先将标记样本类别信息引入图Laplacian,接着通过广义特征值求解确定投影变换矩阵,最后采用载荷因子对变换矩阵进行系数分析,对波段重要性赋以权值并排序.实验比较了多种波段... 提出一种利用图Laplacian实现半监督波段选择的方法.该方法首先将标记样本类别信息引入图Laplacian,接着通过广义特征值求解确定投影变换矩阵,最后采用载荷因子对变换矩阵进行系数分析,对波段重要性赋以权值并排序.实验比较了多种波段选择算法,结果表明算法能更好地利用标记样本的类别信息和大量非标记样本中的局部结构信息,性能优于多种波段选择方法. 展开更多
关键词 监督特征加权 laplacian 波段选择 高光谱数据分类
在线阅读 下载PDF
集成最近邻规则的半监督顺序回归算法 被引量:1
5
作者 何海江 何文德 刘华富 《计算机应用》 CSCD 北大核心 2010年第4期1022-1025,共4页
监督型顺序回归算法需要足够多的有标签样本,而在实践中,标注样本的序数耗时耗力,甚至难以完成。为此,提出一种集成最近邻规则的半监督顺序回归算法。基于最近邻,针对每个有标签样本,在无标签数据集选择与其最近似的若干样本赋以相同序... 监督型顺序回归算法需要足够多的有标签样本,而在实践中,标注样本的序数耗时耗力,甚至难以完成。为此,提出一种集成最近邻规则的半监督顺序回归算法。基于最近邻,针对每个有标签样本,在无标签数据集选择与其最近似的若干样本赋以相同序数;再由监督型顺序回归算法训练有标签样本和新标注样本。多个数据集的实验结果显示,该方法能显著改善顺序回归性能。另外,引入折扣因子λ评估新标注样本的可信度,并讨论了λ和有标签数据集大小对方法的影响。 展开更多
关键词 监督顺序回归 最近邻 无标签样本 折扣因子
在线阅读 下载PDF
结合图半监督与广义回归神经网络的非侵入式海洋平台负荷监测 被引量:14
6
作者 张安安 庄景泰 +2 位作者 郭红鼎 曲广龙 周志通 《电力系统保护与控制》 EI CSCD 北大核心 2020年第7期85-91,共7页
海洋平台微电网所处环境复杂,对其自动化和智能化要求较高,目前缺少对其负荷实时智能监测和管理的方法。从非侵入式负荷监测的角度,考虑海洋平台的经济性要求和特殊的工业环境,提出结合图半监督与广义回归神经网络的非侵入式海洋平台负... 海洋平台微电网所处环境复杂,对其自动化和智能化要求较高,目前缺少对其负荷实时智能监测和管理的方法。从非侵入式负荷监测的角度,考虑海洋平台的经济性要求和特殊的工业环境,提出结合图半监督与广义回归神经网络的非侵入式海洋平台负荷监测方法。采用图半监督学习算法自动标记训练数据集,减少了人工标记数据的工作量,使系统能自动完成数据标记。并与半监督聚类算法对比分析,表明图半监督学习算法对数据标记具有更高的正确率。再利用广义回归神经网络较强的非线性分类能力,提升负荷识别的识别精度和减少计算复杂度。Matlab/Simulink仿真结果表明,所提出的负荷识别算法不仅减少了人工干预而且具有高精度的识别率。 展开更多
关键词 海洋平台 数据标签 非侵入式负荷监测 监督学习 广义回归神经网络
在线阅读 下载PDF
基于密度分布的半监督回归算法研究
7
作者 张倩 李明 王雪松 《工矿自动化》 北大核心 2012年第3期29-30,共2页
提出了推导密度函数的基本假设,对密度函数进行了推导,通过密度函数实现了密度区域的划分;对同一密度范围内的未标签值标记的估计给出了具体的处理方法;最后介绍了基于密度分布的半监督回归算法的具体实现步骤。该算法实现了对未标签点... 提出了推导密度函数的基本假设,对密度函数进行了推导,通过密度函数实现了密度区域的划分;对同一密度范围内的未标签值标记的估计给出了具体的处理方法;最后介绍了基于密度分布的半监督回归算法的具体实现步骤。该算法实现了对未标签点的标记,能够减小对未标签点标签值的估计误差,提高估计的准确度。 展开更多
关键词 机器学习 监督学习 回归算法 密度分布
在线阅读 下载PDF
图Laplacian和自训练用于高光谱数据半监督波段选择
8
作者 黄睿 吕智强 《数据采集与处理》 CSCD 北大核心 2014年第6期981-985,共5页
波段选择是数据降维的有效手段,但有限的标记样本影响了监督波段选择的性能。提出一种利用图Laplacian和自训练策略实现半监督波段选择的方法。该方法首先定义基于图的半监督特征评分准则以产生初始波段子集,接着在该子集基础上进行分类... 波段选择是数据降维的有效手段,但有限的标记样本影响了监督波段选择的性能。提出一种利用图Laplacian和自训练策略实现半监督波段选择的方法。该方法首先定义基于图的半监督特征评分准则以产生初始波段子集,接着在该子集基础上进行分类,采用自训练策略将部分可信度较高的非标记样本扩展至标记样本集合,再用特征评分准则对波段子集进行更新。重复该过程,获得最终波段子集。高光谱波段选择与分类实验比较了多种非监督、监督和半监督方法,实验结果表明所提算法能选择出更好的波段子集。 展开更多
关键词 高光谱数据分类 波段选择 监督学习 laplacian 自训练
在线阅读 下载PDF
交叉口车辆行为感知在线半监督混合方法
9
作者 张海伦 王广玮 +3 位作者 孟庆文 许庆 王建强 李克强 《汽车工程》 EI CSCD 北大核心 2024年第11期1993-2004,共12页
自动驾驶感知系统须对目标车辆运动进行感知,以制定合理交互决策。针对行为感知在时间上的滞后性和数据中可能存在的波动和异常值导致感知准确率差的问题,本文提出一种在线半监督混合方法。首先,采用自回归积分移动平均和在线梯度下降... 自动驾驶感知系统须对目标车辆运动进行感知,以制定合理交互决策。针对行为感知在时间上的滞后性和数据中可能存在的波动和异常值导致感知准确率差的问题,本文提出一种在线半监督混合方法。首先,采用自回归积分移动平均和在线梯度下降优化器设计基于数据驱动的车辆运动状态在线预测算法。然后,构建基于微簇的初始模型,并以K近邻为基分类器建立集成学习策略,设计错误驱动代表性学习和指数衰减策略实现对初始模型的迭代更新。最后,基于驾驶模拟平台采集了验证所提算法有效性的实验数据。结果表明,所提出的方法对于车辆行为波动具有快速适应性,在线预测算法可准确预测车辆运动趋势,行为感知算法对于不同预测时间下的车辆行为均有较强适应能力。 展开更多
关键词 自动驾驶 行为预测 回归积分移动平均 集成学习 监督学习
在线阅读 下载PDF
基于L21范数和回归正则项的半监督聚类算法 被引量:5
10
作者 朱恒东 马盈仓 +1 位作者 张要 张宁 《郑州大学学报(理学版)》 CAS 北大核心 2020年第4期67-74,共8页
针对半监督学习中基于线性嵌入的回归正则项难以捕获数据流形结构的问题,提出基于L21范数和回归模型的半监督聚类算法。一方面充分利用监督信息,指导初始相似矩阵的构造,并利用L21正则项构造标签矩阵F的弹性嵌入回归模型;另一方面借助L2... 针对半监督学习中基于线性嵌入的回归正则项难以捕获数据流形结构的问题,提出基于L21范数和回归模型的半监督聚类算法。一方面充分利用监督信息,指导初始相似矩阵的构造,并利用L21正则项构造标签矩阵F的弹性嵌入回归模型;另一方面借助L21范数的鲁棒性学习合理的相似矩阵,从而改善聚类效果。通过实验表明,所提出的聚类算法在人工数据集和真实数据集上的聚类结果较其他聚类算法更加有效。 展开更多
关键词 L21范数 监督学习 监督信息 回归
在线阅读 下载PDF
基于半监督学习和最小二乘支持向量机回归的废旧机电产品再制造成本预测方法研究 被引量:1
11
作者 敖秀奕 张旭刚 +1 位作者 江志刚 张华 《组合机床与自动化加工技术》 北大核心 2019年第4期71-73,77,共4页
文章针对再制造批量小、实验所需样本不足的问题,提出一种基于半监督学习与最小二乘支持向量机回归的再制造成本预测方法。废旧机电产品的可用零部件分为可直接利用、可再制造加工利用和直接替换三种类型,以各类型零部件的比率和再制造... 文章针对再制造批量小、实验所需样本不足的问题,提出一种基于半监督学习与最小二乘支持向量机回归的再制造成本预测方法。废旧机电产品的可用零部件分为可直接利用、可再制造加工利用和直接替换三种类型,以各类型零部件的比率和再制造复杂系数为输入,再制造成本为输出,建立半监督学习与最小二乘支持向量机回归相结合的再制造成本预测模型。利用k最近邻算法估计未进行再制造样本的成本,然后将未进行再制造的样本与已知再制造成本的样本代入方程组即可求出该预测模型。案例分析表明基于半监督学习与最小二乘支持向量机回归的成本预测方法能够在已知再制造成本的样本量较少的情况下对成本进行快速且准确的预测,是一种很好的成本预测方法。 展开更多
关键词 再制造 监督学习 最小二乘支持向量机回归
在线阅读 下载PDF
基于半监督回归的高光谱土壤重金属质量浓度反演 被引量:1
12
作者 毛耿旋 涂彦 +1 位作者 崔文博 陶超 《应用科学学报》 CAS CSCD 北大核心 2022年第6期941-952,共12页
针对如何利用少量有标记样本和大量无标记样本训练出鲁棒性的土壤重金属质量浓度反演模型的问题,以土壤中重金属镉(Cd)为研究对象,选取4个不同地区(衡阳-郴州,原平-保定)的光谱数据分两组进行实验验证。在通过迁移成分分析方法缩小不同... 针对如何利用少量有标记样本和大量无标记样本训练出鲁棒性的土壤重金属质量浓度反演模型的问题,以土壤中重金属镉(Cd)为研究对象,选取4个不同地区(衡阳-郴州,原平-保定)的光谱数据分两组进行实验验证。在通过迁移成分分析方法缩小不同区域的光谱分布差异后,提出一种基于半监督回归的高光谱土壤重金属质量浓度反演模型。实验结果显示,与传统的全监督建模方法相比,在第1组衡阳-郴州的实验中,所提的半监督方法能够将可决系数R^(2)提升至0.75,相对分析误差(relative predictive deviation,RPD)提升至2.15;在第2组原平-保定的实验中,R^(2)提升至0.70,RPD提升至1.61。实验表明,在较少标记样本情况下,通过引入大量的未标记样本进行半监督回归分析可有效提升模型反演精度。 展开更多
关键词 高光谱遥感 监督回归 迁移成分分析 土壤重金属质量浓度反演
在线阅读 下载PDF
基于Tri-training GPR的半监督软测量建模方法
13
作者 马君霞 李林涛 熊伟丽 《化工学报》 EI CSCD 北大核心 2024年第7期2613-2623,共11页
集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training ... 集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training GPR模型。该建模策略充分发挥了半监督学习的优势,减轻建模过程对标记样本数据的需求,在低数据标签率下,仍能通过对无标记数据进行筛选从而扩充可用于建模的有标记样本数据集,并进一步结合半监督学习和集成学习的优势,提出一种新的选择高置信度样本的思路。将所提方法应用于青霉素发酵和脱丁烷塔过程,建立青霉素和丁烷浓度预测软测量模型,与传统的建模方法相比获得了更优的预测结果,验证了模型的有效性。 展开更多
关键词 软测量 集成学习 监督学习 TRI-TRAINING 高斯过程回归 过程控制 动力学模型 化学过程
在线阅读 下载PDF
一种双优选的半监督回归算法 被引量:3
14
作者 程康明 熊伟丽 《智能系统学报》 CSCD 北大核心 2019年第4期689-696,共8页
针对一些工业过程中存在的有标签样本少,而传统的半监督学习无法保证对无标签样本准确预测的问题,提出一种双优选的半监督回归算法。首先,确定有标签样本密集区中心,并计算无标签样本与该中心的相似度,实现对无标签样本的优选,同时根据... 针对一些工业过程中存在的有标签样本少,而传统的半监督学习无法保证对无标签样本准确预测的问题,提出一种双优选的半监督回归算法。首先,确定有标签样本密集区中心,并计算无标签样本与该中心的相似度,实现对无标签样本的优选,同时根据有标签样本间相似度优选有标签样本;然后,利用高斯过程回归方法对选出的有标签样本建立辅学习器,以对优选出的无标签样本预测标签;最后,利用这些伪标签样本提升主学习器的预测效果。通过数值例子以及实际脱丁烷塔过程数据进行建模仿真,证明了所提方法在有标签样本较少的情况下有良好的预测性能。 展开更多
关键词 无标签样本 优选 监督回归 样本密集区中心 相似度 高斯过程回归 辅学习器 主学习器 脱丁烷塔过程 预测性能
在线阅读 下载PDF
基于变分自编码器的情感回归半监督领域适应方法 被引量:5
15
作者 刘欢 徐健 李寿山 《郑州大学学报(理学版)》 CAS 北大核心 2019年第2期47-51,共5页
提出一个新的情感回归半监督领域适应方法.首先使用长短期记忆网络(long short-term memory,LSTM)实现回归模型,其次使用变分自编码器(variational autoencoder,VAE)实现生成模型,最后联合学习LSTM回归模型和VAE生成模型,实现基于变分... 提出一个新的情感回归半监督领域适应方法.首先使用长短期记忆网络(long short-term memory,LSTM)实现回归模型,其次使用变分自编码器(variational autoencoder,VAE)实现生成模型,最后联合学习LSTM回归模型和VAE生成模型,实现基于变分自编码器的情感回归半监督领域适应模型.实验结果表明,所提出的基于变分自编码器的情感回归半监督领域适应方法较其他基准方法能有效提高实验性能. 展开更多
关键词 变分自编码器 情感回归 监督 领域适应
在线阅读 下载PDF
基于半监督回归学习的人脸几何美丽分数
16
作者 戴礼青 金忠 孙明明 《计算机应用与软件》 CSCD 2015年第3期209-211,219,共4页
基于人脸美学的迅速发展,对人脸的几何特征定义、几何特征规范化以及几何特征对判断人脸美与否的贡献进行研究。首先定义人脸几何美丽分数函数,然后将流形学习与半监督学习相结合,用流形上的半监督回归方法学习人脸几何美丽分数。为了... 基于人脸美学的迅速发展,对人脸的几何特征定义、几何特征规范化以及几何特征对判断人脸美与否的贡献进行研究。首先定义人脸几何美丽分数函数,然后将流形学习与半监督学习相结合,用流形上的半监督回归方法学习人脸几何美丽分数。为了突出几何特征,还验证了人脸表情与几何美丽分数之间的关系。与K近邻(KNN)、支持向量机(SVM)、C4.5决策树分类方法相比,通过实验验证,证明了所提方法的有效性和可行性。 展开更多
关键词 人脸美学 人脸几何特征 几何美丽分数 流形学习 监督回归
在线阅读 下载PDF
一种自训练框架下的三优选半监督回归算法 被引量:4
17
作者 程康明 熊伟丽 《智能系统学报》 CSCD 北大核心 2020年第3期568-577,共10页
工业生产过程数据由于主导变量分析代价等因素可能出现有标签样本少而无标签样本多的情况,为提升对无标签样本利用的准确性与充分性,提出一种自训练框架下的三优选半监督回归算法。对无标签样本与有标签样本进行优选,保证两类数据的相似... 工业生产过程数据由于主导变量分析代价等因素可能出现有标签样本少而无标签样本多的情况,为提升对无标签样本利用的准确性与充分性,提出一种自训练框架下的三优选半监督回归算法。对无标签样本与有标签样本进行优选,保证两类数据的相似性,以提高无标签样本预测的准确性;利用高斯过程回归方法对所选有标签样本集建模,预测所选无标签样本集,得到伪标签样本集;通过对伪标签样本集置信度进行判断,优选出置信度高的样本用于更新初始样本集;为了进一步提高无标签样本利用的充分性,在自训练框架下,进行多次循环筛选提高无标签样本的利用率。通过对脱丁烷塔过程实际数据的建模仿真,验证了所提方法在较少有标签样本情况下的良好预测性能。 展开更多
关键词 工业生产 无标签样本 优选 监督回归 相似性 高斯过程回归 置信度判断 自训练 预测
在线阅读 下载PDF
基于Bagging半监督深度森林回归的二噁英排放浓度软测量 被引量:6
18
作者 徐雯 汤健 +1 位作者 夏恒 乔俊飞 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第6期251-259,共9页
城市固废焚烧(MSWI)过程产生的副产品之一是被称为“世纪之毒”的二噁英(DXN),受限于其排放浓度检测技术难度以及时间与经济成本等因素,难以获得足量的有标记样本用于构建DXN排放浓度软测量模型。为有效利用现场控制系统采集的大量无标... 城市固废焚烧(MSWI)过程产生的副产品之一是被称为“世纪之毒”的二噁英(DXN),受限于其排放浓度检测技术难度以及时间与经济成本等因素,难以获得足量的有标记样本用于构建DXN排放浓度软测量模型。为有效利用现场控制系统采集的大量无标记样本,同时解决传统浅层学习模型泛化性能较差的问题,提出了基于Bagging半监督深度森林回归(DFR)的DXN排放浓度软测量方法。首先,基于Bagging机制以重采样原始标记数据集的方式获得多个训练子集,并构建具有差异性的多个随机森林(RF)模型;接着,将RF模型迭代更新、近邻集合选择和性能评估策略相结合用于获得高置信度伪标记样本;最后,基于伪标记和原始标记样本集构建DFR模型。采用北京某MSWI电厂的实际DXN检测数据验证了所提方法的有效性,结果表明,该方法的预测稳定性较好,其训练、验证和测试集的均方根误差分别为0.015 50、0.020 23和0.019 73。 展开更多
关键词 城市固废焚烧 二噁英软测量 Bagging监督 伪标记样本 随机森林 深度森林回归
在线阅读 下载PDF
利用高斯域的半监督回归和主动学习
19
作者 崔鹏 张汝波 《计算机工程》 CAS CSCD 北大核心 2009年第15期187-189,共3页
介绍一种定义近邻图上的高斯域(GF)及用于降维和分类的GF的相关知识,提出一种用于半监督回归的高斯域,能自动设置模型参数和近邻数,利用监督和无监督数据进行熵值查询选择从而进行主动学习。实验将其与半监督学习法进行比较并验证了GF... 介绍一种定义近邻图上的高斯域(GF)及用于降维和分类的GF的相关知识,提出一种用于半监督回归的高斯域,能自动设置模型参数和近邻数,利用监督和无监督数据进行熵值查询选择从而进行主动学习。实验将其与半监督学习法进行比较并验证了GF的有效性。 展开更多
关键词 高斯域 监督回归 主动学习 CHOLESKY分解
在线阅读 下载PDF
基于KL距离的非平衡数据半监督学习算法 被引量:11
20
作者 许震 沙朝锋 +1 位作者 王晓玲 周傲英 《计算机研究与发展》 EI CSCD 北大核心 2010年第1期81-87,共7页
在实际应用中,由于各种原因时常无法直接获得已标识反例,导致传统分类方法暂时失灵,因此,基于正例和未标识集的半监督学习顿时成了理论界研究的热点.研究者们提出了不同的解决方法,然而,这些方法都不能有效处理非平衡的分类问题,尤其当... 在实际应用中,由于各种原因时常无法直接获得已标识反例,导致传统分类方法暂时失灵,因此,基于正例和未标识集的半监督学习顿时成了理论界研究的热点.研究者们提出了不同的解决方法,然而,这些方法都不能有效处理非平衡的分类问题,尤其当隐匿反例非常少或训练集中的实例分布不均匀时.因此,提出了一种基于KL距离的半监督分类算法——LiKL:依次挖掘出未标识集中的最可靠正例和反例,接着使用训练好的增强型分类器来分类.与其他方法相比,不仅提高了分类的查准率和查全率,而且具有鲁棒性. 展开更多
关键词 监督学习 非平衡 KL距离 朴素贝叶斯 LOGISTIC回归
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部