The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statisti...The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statistics of stochastic channel dynamics in Hodgkin–Huxley neurons. Here, we introduce a modified gate-based Langevin approach with rescaled noise strength to simulate stochastic channel dynamics. The rescaled independent gate and identical gate Langevin approaches improve the statistical results for the mean membrane voltage, inter-spike interval, and spike amplitude.展开更多
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.11125419)the National Natural Science Foundation of China(Grant No.10925525)+1 种基金the Funds for the Leading Talents of Fujian ProvinceChina
文摘The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statistics of stochastic channel dynamics in Hodgkin–Huxley neurons. Here, we introduce a modified gate-based Langevin approach with rescaled noise strength to simulate stochastic channel dynamics. The rescaled independent gate and identical gate Langevin approaches improve the statistical results for the mean membrane voltage, inter-spike interval, and spike amplitude.