陆面过程模式是气候模式和天气模式的核心组成部分之一.在土壤—植被—大气耦合模式(Soil-PlantAtmosphere Model,SPAM)的基础上,发展了新一代北京大学陆面过程模式PKULM(Peking University Land Model).本文首先介绍了PKULM的辐射传输...陆面过程模式是气候模式和天气模式的核心组成部分之一.在土壤—植被—大气耦合模式(Soil-PlantAtmosphere Model,SPAM)的基础上,发展了新一代北京大学陆面过程模式PKULM(Peking University Land Model).本文首先介绍了PKULM的辐射传输、湍流输送、光合作用、土壤水热输送等过程的参数化方案;采用隐式迭代计算框架,发展并应用了一个快速的线性方程组求解算法,提高了模式计算稳定性;提出并使用了二分搜索算法计算气孔阻抗,避免了CLM(Community Land Model)等使用的迭代方法在干旱区不稳定的情况,提高了模式的适用性;采用水势为基础的土壤水分扩散方程,使模式能够模拟土壤饱和区的水分输送过程,为进一步与水文过程模式耦合奠定了基础;还发展了一个地表积水与径流过程的机理模型,提高了模式对地表水分平衡过程的模拟能力;最后,使用"中国西北干旱区陆—气相互作用观测试验"平凉站的资料对模式进行了检验并与NOAH(National Center for Environmental Prediction,Oregon State University,Air Force,and Hydrology Lab model)陆面过程模式的模拟结果进行了比较,结果表明PKULM能够较好地模拟西北半干旱区农田下垫面地气交换过程.展开更多
基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project...基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project)数值模拟试验,探讨了植被水力方案的引入对中国夏季降水模拟的影响。结果表明,植被水力方案的引入能够显著降低CAS-ESM2.0模式对中国夏季降水气候态的模拟偏差,特别是显著改进了中国东部、青藏高原降水的低估,青藏高原以东的川西地区降水高估的偏差,同时也改善了夏季降水年际变率和极端大雨日数的模拟性能。进一步分析显示,植被水力方案的改进显著减小了土壤湿度在长江流域偏干、青藏高原偏湿的模式模拟偏差,降低了我国中东部以及青藏高原地表感热通量和潜热通量的模拟偏差,改善了模式对陆气相互作用过程的模拟能力。陆气相互作用的改进显著提升了模式对东亚季风环流的模拟,改进后的模式模拟的西北太平洋海平面气压的负偏差显著降低,有利于西南季风以及西北太平洋向我国东部的水汽输送,同时在对流层低层出现反气旋异常响应,有效改善了中国东部南风偏弱及水汽辐合偏弱的模拟偏差,使得我国东部降水负偏差显著减小。以上结果表明,包括植被水力过程的陆气相互作用的合理表述是改善东亚夏季降水模拟的重要途径之一。展开更多
黄河源是黄河流域重要的水源涵养区,研究不同土壤分层对冻融过程模拟结果的影响,提高模式对水热输送过程的模拟能力,对高寒地区冻融过程的研究有着重要意义。本文利用黄河源区玛多站的观测数据作为强迫场驱动陆面模式CLM5.0(Community L...黄河源是黄河流域重要的水源涵养区,研究不同土壤分层对冻融过程模拟结果的影响,提高模式对水热输送过程的模拟能力,对高寒地区冻融过程的研究有着重要意义。本文利用黄河源区玛多站的观测数据作为强迫场驱动陆面模式CLM5.0(Community Land Model)在玛多站进行模拟,使用CLM5.0改进后的三种土壤分层方案,模拟不同土壤分层对土壤冻融过程的影响,对比模拟结果与观测资料,分析改进后分层方案对陆面模式CLM5.0在黄河源区冻融过程中对土壤温湿度模拟能力的提升效果,得出以下结论:(1)调整后的三种土壤分层方案对玛多站土壤温度的模拟效果有了较好的提升,三种方案中30层方案的模拟效果最好,模拟值与观测值的平均相关系数达到了0.954,平均均方根误差为3.334℃;(2)调整后的三种土壤分层方案对玛多站土壤湿度的模拟效果也有了较为明显的提升,能够准确地捕捉各层土壤湿度在一整年内的季节性变化,受到降水影响,模拟值与实测值的波谷模拟还有偏差,三种方案中30层方案的模拟效果最好,平均相关系数为0.770,平均均方根误差为0.039 m^(3)·m^(-3);(3)对于冻结初日与消融初日的模拟,调整后的三种不同土壤分层对于冻结期与消融期模拟有明显影响,浅层模拟的冻结初始日和消融初始日均与观测值相符,而在深层对于冻结初始日和消融初始日的模拟有些偏差,较观测值有延迟,消融期也更为持久。展开更多
文摘陆面过程模式是气候模式和天气模式的核心组成部分之一.在土壤—植被—大气耦合模式(Soil-PlantAtmosphere Model,SPAM)的基础上,发展了新一代北京大学陆面过程模式PKULM(Peking University Land Model).本文首先介绍了PKULM的辐射传输、湍流输送、光合作用、土壤水热输送等过程的参数化方案;采用隐式迭代计算框架,发展并应用了一个快速的线性方程组求解算法,提高了模式计算稳定性;提出并使用了二分搜索算法计算气孔阻抗,避免了CLM(Community Land Model)等使用的迭代方法在干旱区不稳定的情况,提高了模式的适用性;采用水势为基础的土壤水分扩散方程,使模式能够模拟土壤饱和区的水分输送过程,为进一步与水文过程模式耦合奠定了基础;还发展了一个地表积水与径流过程的机理模型,提高了模式对地表水分平衡过程的模拟能力;最后,使用"中国西北干旱区陆—气相互作用观测试验"平凉站的资料对模式进行了检验并与NOAH(National Center for Environmental Prediction,Oregon State University,Air Force,and Hydrology Lab model)陆面过程模式的模拟结果进行了比较,结果表明PKULM能够较好地模拟西北半干旱区农田下垫面地气交换过程.
文摘基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project)数值模拟试验,探讨了植被水力方案的引入对中国夏季降水模拟的影响。结果表明,植被水力方案的引入能够显著降低CAS-ESM2.0模式对中国夏季降水气候态的模拟偏差,特别是显著改进了中国东部、青藏高原降水的低估,青藏高原以东的川西地区降水高估的偏差,同时也改善了夏季降水年际变率和极端大雨日数的模拟性能。进一步分析显示,植被水力方案的改进显著减小了土壤湿度在长江流域偏干、青藏高原偏湿的模式模拟偏差,降低了我国中东部以及青藏高原地表感热通量和潜热通量的模拟偏差,改善了模式对陆气相互作用过程的模拟能力。陆气相互作用的改进显著提升了模式对东亚季风环流的模拟,改进后的模式模拟的西北太平洋海平面气压的负偏差显著降低,有利于西南季风以及西北太平洋向我国东部的水汽输送,同时在对流层低层出现反气旋异常响应,有效改善了中国东部南风偏弱及水汽辐合偏弱的模拟偏差,使得我国东部降水负偏差显著减小。以上结果表明,包括植被水力过程的陆气相互作用的合理表述是改善东亚夏季降水模拟的重要途径之一。
文摘黄河源是黄河流域重要的水源涵养区,研究不同土壤分层对冻融过程模拟结果的影响,提高模式对水热输送过程的模拟能力,对高寒地区冻融过程的研究有着重要意义。本文利用黄河源区玛多站的观测数据作为强迫场驱动陆面模式CLM5.0(Community Land Model)在玛多站进行模拟,使用CLM5.0改进后的三种土壤分层方案,模拟不同土壤分层对土壤冻融过程的影响,对比模拟结果与观测资料,分析改进后分层方案对陆面模式CLM5.0在黄河源区冻融过程中对土壤温湿度模拟能力的提升效果,得出以下结论:(1)调整后的三种土壤分层方案对玛多站土壤温度的模拟效果有了较好的提升,三种方案中30层方案的模拟效果最好,模拟值与观测值的平均相关系数达到了0.954,平均均方根误差为3.334℃;(2)调整后的三种土壤分层方案对玛多站土壤湿度的模拟效果也有了较为明显的提升,能够准确地捕捉各层土壤湿度在一整年内的季节性变化,受到降水影响,模拟值与实测值的波谷模拟还有偏差,三种方案中30层方案的模拟效果最好,平均相关系数为0.770,平均均方根误差为0.039 m^(3)·m^(-3);(3)对于冻结初日与消融初日的模拟,调整后的三种不同土壤分层对于冻结期与消融期模拟有明显影响,浅层模拟的冻结初始日和消融初始日均与观测值相符,而在深层对于冻结初始日和消融初始日的模拟有些偏差,较观测值有延迟,消融期也更为持久。