A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-co...A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm(SSA) cannot solve the Lagrangian dual(LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm(DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.展开更多
Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it pos...Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
基金Projects(51435009,51575212,61573249,61371200)supported by the National Natural Science Foundation of ChinaProjects(2015T80798,2014M552040,2014M561250,2015M571328)supported by Postdoctoral Science Foundation of ChinaProject(L2015372)supported by Liaoning Province Education Administration,China
文摘A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm(SSA) cannot solve the Lagrangian dual(LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm(DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.
文摘Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.