合理预测猪肉价格对稳定生猪市场价格波动及促进猪产业的健康持续发展具有重要意义。本文深入研究了猪肉价格的影响因素,整合了29种相关价格数据。通过分析数据特征,针对Informer模型在猪肉价格数据提取方面的局限性,对Informer模型进...合理预测猪肉价格对稳定生猪市场价格波动及促进猪产业的健康持续发展具有重要意义。本文深入研究了猪肉价格的影响因素,整合了29种相关价格数据。通过分析数据特征,针对Informer模型在猪肉价格数据提取方面的局限性,对Informer模型进行改进,将自注意力机制ProbAttention更换为Synthesizer模型,引入了价格波动模块。在此基础上,本文提出了一种新的价格预测组合模型STL-Informer-ARIMA,模型结合了随机森林(Random Forest)和递归特征消除(Recursive Feature Elimination)进行特征选择,利用季节性和趋势分解法(Seasonal and Trend Decomposition Using Loess)对猪肉(白条猪)价格进行分解,采用ARIMA模型对季节项进行预测,同时针对趋势项和残差项采用改进的Informer模型进行预测。实验表明,STL-Informer-ARIMA组合模型的MSE为0.532,MAE为0.446,RMSE为0.729,MAPE为0.030,R^(2)为0.958,相较于LSTM、SVR和GRU等常用价格预测模型,本文的组合模型有效提升了猪肉价格预测的准确性和可靠性。展开更多
文摘小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。
文摘合理预测猪肉价格对稳定生猪市场价格波动及促进猪产业的健康持续发展具有重要意义。本文深入研究了猪肉价格的影响因素,整合了29种相关价格数据。通过分析数据特征,针对Informer模型在猪肉价格数据提取方面的局限性,对Informer模型进行改进,将自注意力机制ProbAttention更换为Synthesizer模型,引入了价格波动模块。在此基础上,本文提出了一种新的价格预测组合模型STL-Informer-ARIMA,模型结合了随机森林(Random Forest)和递归特征消除(Recursive Feature Elimination)进行特征选择,利用季节性和趋势分解法(Seasonal and Trend Decomposition Using Loess)对猪肉(白条猪)价格进行分解,采用ARIMA模型对季节项进行预测,同时针对趋势项和残差项采用改进的Informer模型进行预测。实验表明,STL-Informer-ARIMA组合模型的MSE为0.532,MAE为0.446,RMSE为0.729,MAPE为0.030,R^(2)为0.958,相较于LSTM、SVR和GRU等常用价格预测模型,本文的组合模型有效提升了猪肉价格预测的准确性和可靠性。