无线传感器网络的节点运行往往受限于能量供给。对太阳能进行采集并转换成电能存储,可以延长节点的使用寿命。对太阳能进行能量预测,可以更好地规划和使用采集到的能量,这有助于节省能源、避免浪费,提升无线传感器网络的生存周期。针对...无线传感器网络的节点运行往往受限于能量供给。对太阳能进行采集并转换成电能存储,可以延长节点的使用寿命。对太阳能进行能量预测,可以更好地规划和使用采集到的能量,这有助于节省能源、避免浪费,提升无线传感器网络的生存周期。针对太阳能预测,提出一种基于自回归积分移动平均-长短期记忆(Autoregressive Integrated Moving Average-Long Short Term Memory,ARIMA-LSTM)组合模型的能量预测方法。首先,采用ARIMA模型来对太阳辐照数据进行预测,提取数据中的线性分量;然后将过滤后的残差代入LSTM神经网络模型,得到非线性分量的预测;最后将二者进行相加,得到最终的预测结果。仿真实验显示,组合模型比起现有的单一模型,能够有效地提高预测的精度。展开更多
针对现有机械手移动偏差控制技术存在的轨迹控制不连续、复杂度高、综合效率低等问题,以机器学习和深度学习为基础提出一种混合神经网络控制算法。分析机械手各关节、连杆的空间坐标转换关系,以RBF为基础构建混合神经网络模型,选用逆多...针对现有机械手移动偏差控制技术存在的轨迹控制不连续、复杂度高、综合效率低等问题,以机器学习和深度学习为基础提出一种混合神经网络控制算法。分析机械手各关节、连杆的空间坐标转换关系,以RBF为基础构建混合神经网络模型,选用逆多二次函数作为模型的激活函数,分别确定中间隐层和输出层的权值;引入LSTM长短记忆算法,利用LSTM算法的输入门、遗忘门和输出门结构设计,抑制坐标数据训练时出现的梯度膨胀问题,并给出精确的轨迹修正指令。仿真结果表明:提出的混合神经网络算法采样点轨迹偏差均值为0.02 mm, VARP值趋近于0,具有更好的自动控制稳定性和更高的控制效率。展开更多
文摘无线传感器网络的节点运行往往受限于能量供给。对太阳能进行采集并转换成电能存储,可以延长节点的使用寿命。对太阳能进行能量预测,可以更好地规划和使用采集到的能量,这有助于节省能源、避免浪费,提升无线传感器网络的生存周期。针对太阳能预测,提出一种基于自回归积分移动平均-长短期记忆(Autoregressive Integrated Moving Average-Long Short Term Memory,ARIMA-LSTM)组合模型的能量预测方法。首先,采用ARIMA模型来对太阳辐照数据进行预测,提取数据中的线性分量;然后将过滤后的残差代入LSTM神经网络模型,得到非线性分量的预测;最后将二者进行相加,得到最终的预测结果。仿真实验显示,组合模型比起现有的单一模型,能够有效地提高预测的精度。
文摘针对现有机械手移动偏差控制技术存在的轨迹控制不连续、复杂度高、综合效率低等问题,以机器学习和深度学习为基础提出一种混合神经网络控制算法。分析机械手各关节、连杆的空间坐标转换关系,以RBF为基础构建混合神经网络模型,选用逆多二次函数作为模型的激活函数,分别确定中间隐层和输出层的权值;引入LSTM长短记忆算法,利用LSTM算法的输入门、遗忘门和输出门结构设计,抑制坐标数据训练时出现的梯度膨胀问题,并给出精确的轨迹修正指令。仿真结果表明:提出的混合神经网络算法采样点轨迹偏差均值为0.02 mm, VARP值趋近于0,具有更好的自动控制稳定性和更高的控制效率。