不同织机由于生产情况和影响参数各异,实际的织布效率和了机时间也存在着很大的差别。针对利用预先设定好的计划生产静态参数对织机了机时间进行计算时,存在理论计算值与实际织机了机时间偏差过大的问题,提出了一种基于长短时记忆(Long ...不同织机由于生产情况和影响参数各异,实际的织布效率和了机时间也存在着很大的差别。针对利用预先设定好的计划生产静态参数对织机了机时间进行计算时,存在理论计算值与实际织机了机时间偏差过大的问题,提出了一种基于长短时记忆(Long short term memory,LSTM)循环神经网络的织机了机预测方法。从织机经纬向停车情况、人员工作效率、加工布匹品种3个方面出发,分析影响织机了机时间的各类因素,构建了具有时间序列特性的织机生产情况数据集。通过设置时间进度系数动态调整模型在织轴整个生命周期内的预测情况,并从损失程度和训练耗时两方面考虑对模型性能进行优化。最后,利用8组实验数据对模型的可靠性进行验证。结果表明:模型在了机预测截止时间的前30 h至前6 h,模型的预测结果值与实际值之间的平均误差范围为0.84 h至1.52 h,满足对实际生产时的所需指标要求。展开更多
针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对...针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对神经网络进行训练,使用验证样本进行验证。结果表明,用该方法进行电池SOC预测时可使最大绝对误差仅为1.96%,均方根误差为0.986%,可行性被验证。分析神经网络隐含层中不同的神经元个数对预测结果的影响,对比不同批大小情况下训练出的神经网络的预测误差。将隐含层分别设置为1至3个LSTM细胞核,得到不同条件下神经网络的预测误差。结果为电池SOC预测的神经网络模型的隐含层神经元个数、批大小和LSTM细胞核个数的设定提供参考。展开更多
基坑沉降是基坑在各种内外因素影响下产生,对工程施工质量和安全有着重要影响。文章针对传统预测模型的使用弊端,以杭州市某基坑工程共139组基坑沉降数据为例,建立了LSTM神经网络(Long Short Term Memory)预测模型,并采用遗传优化算法(G...基坑沉降是基坑在各种内外因素影响下产生,对工程施工质量和安全有着重要影响。文章针对传统预测模型的使用弊端,以杭州市某基坑工程共139组基坑沉降数据为例,建立了LSTM神经网络(Long Short Term Memory)预测模型,并采用遗传优化算法(Genetic Algorithm)调优模型超参数,对基坑变形预测进行分析。结果表明:LSTM神经网络模型适用于预测基坑沉降,经过GA调优的模型预测精度较高,MAE和MSE分别为0.41和0.28,相较于手动调参分别降低了22%和30%,R2提高了0.06,达到了0.92。展开更多
文摘不同织机由于生产情况和影响参数各异,实际的织布效率和了机时间也存在着很大的差别。针对利用预先设定好的计划生产静态参数对织机了机时间进行计算时,存在理论计算值与实际织机了机时间偏差过大的问题,提出了一种基于长短时记忆(Long short term memory,LSTM)循环神经网络的织机了机预测方法。从织机经纬向停车情况、人员工作效率、加工布匹品种3个方面出发,分析影响织机了机时间的各类因素,构建了具有时间序列特性的织机生产情况数据集。通过设置时间进度系数动态调整模型在织轴整个生命周期内的预测情况,并从损失程度和训练耗时两方面考虑对模型性能进行优化。最后,利用8组实验数据对模型的可靠性进行验证。结果表明:模型在了机预测截止时间的前30 h至前6 h,模型的预测结果值与实际值之间的平均误差范围为0.84 h至1.52 h,满足对实际生产时的所需指标要求。
文摘针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对神经网络进行训练,使用验证样本进行验证。结果表明,用该方法进行电池SOC预测时可使最大绝对误差仅为1.96%,均方根误差为0.986%,可行性被验证。分析神经网络隐含层中不同的神经元个数对预测结果的影响,对比不同批大小情况下训练出的神经网络的预测误差。将隐含层分别设置为1至3个LSTM细胞核,得到不同条件下神经网络的预测误差。结果为电池SOC预测的神经网络模型的隐含层神经元个数、批大小和LSTM细胞核个数的设定提供参考。
文摘基坑沉降是基坑在各种内外因素影响下产生,对工程施工质量和安全有着重要影响。文章针对传统预测模型的使用弊端,以杭州市某基坑工程共139组基坑沉降数据为例,建立了LSTM神经网络(Long Short Term Memory)预测模型,并采用遗传优化算法(Genetic Algorithm)调优模型超参数,对基坑变形预测进行分析。结果表明:LSTM神经网络模型适用于预测基坑沉降,经过GA调优的模型预测精度较高,MAE和MSE分别为0.41和0.28,相较于手动调参分别降低了22%和30%,R2提高了0.06,达到了0.92。