期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进遗传算法优化LSTM的营养液温度预测模型 被引量:1
1
作者 刘艺梦 王会强 +3 位作者 丁小明 李飞 孙玉林 孙广军 《中国农机化学报》 北大核心 2025年第6期91-97,共7页
准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络... 准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络(LSTM)模型参数的营养液温度预测方法,通过引入正弦函数,对遗传算法中的固定交叉和变异概率进行优化。使用皮尔逊相关分析法获取相关性较强的特征。同时构造特征与时间步长的矩阵,将其输入到网络中进行温度预测。预测结果表明,在预测时间为20~60 min时,模型决定系数为0.954~0.985,均方根误差为0.183℃~0.365℃,平均绝对误差为0.165℃~0.311℃。并在不同清晰度指数K_(T)下进行验证。结果表明,在0.5>K_(T)≥0.2(多云)时,模型营养液温度预测效果最好,且在其他K_(T)下模型可以达到生产所需预测精度要求,为根区精准高效控温提供重要依据。 展开更多
关键词 营养液膜技术 改进遗传算法 lstm神经网络 皮尔逊相关分析 营养液温度预测
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
2
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(lstm)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
3
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(Long Short-Term Memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于IPOA-LSTM辅助的组合导航算法
4
作者 周理想 陈佳 毛宽民 《计算机工程与设计》 北大核心 2025年第5期1241-1247,共7页
为解决INS/GNSS组合导航系统在GNSS信号失锁条件下导航误差迅速增大的问题,提出一种基于改进的鹈鹕优化算法(IPOA)优化长短期记忆神经网络(LSTM)超参数,进而辅助INS/GNSS组合导航的算法。当卫星信号可用时,通过训练建立输入与输出之间... 为解决INS/GNSS组合导航系统在GNSS信号失锁条件下导航误差迅速增大的问题,提出一种基于改进的鹈鹕优化算法(IPOA)优化长短期记忆神经网络(LSTM)超参数,进而辅助INS/GNSS组合导航的算法。当卫星信号可用时,通过训练建立输入与输出之间的关系;卫星信号失锁后,利用训练好的模型进行预测,抑制纯惯导的发散。实测数据实验结果表明,在GNSS信号失锁60 s内,提出的改进算法优于通用的LSTM模型及纯惯导推算方法,能够对组合导航的导航精度进行改善,减小GNSS信号中断对组合导航系统的影响。 展开更多
关键词 惯性导航系统 全球导航卫星系统 组合导航 信号失锁 鹈鹕优化算法 超参数优化 长短期记忆神经网络
在线阅读 下载PDF
一种融合GA和LSTM的边坡变形预测优化网络模型及其应用 被引量:6
5
作者 肖海平 王顺辉 +2 位作者 陈兰兰 范永超 万俊辉 《大地测量与地球动力学》 CSCD 北大核心 2024年第5期491-496,共6页
考虑到BP神经网络模型忽略边坡监测数据存在的时间相关性,以及LSTM模型由于超参数选择存在主观性而易陷入局部最优等问题,提出一种基于遗传算法和长短期记忆网络(GA-LSTM)相结合的边坡变形预测模型,以发挥遗传算法全局搜索能力和LSTM预... 考虑到BP神经网络模型忽略边坡监测数据存在的时间相关性,以及LSTM模型由于超参数选择存在主观性而易陷入局部最优等问题,提出一种基于遗传算法和长短期记忆网络(GA-LSTM)相结合的边坡变形预测模型,以发挥遗传算法全局搜索能力和LSTM预测时序数据的优势。以海明矿业露天采场边坡为研究对象,分别采用BP神经网络模型、LSTM网络模型以及GA-LSTM网络模型对边坡监测点GNSS49变形进行预测分析,并对比各模型达到收敛条件的时间。结果表明,GA-LSTM模型与其他模型达到同一收敛条件的时间差异不大,GA-LSTM模型的拟合准确度在0.1~0.2 mm,是LSTM神经网络模型的5~7倍,是BP神经网络模型的10~20倍,具有较高的精度和稳定性,其预测值与实际监测数据基本一致,可为矿山边坡的安全生产、管理以及决策控制提供科学依据。 展开更多
关键词 露天矿边坡 遗传算法 lstm神经网络 优化网络模型 变形预测
在线阅读 下载PDF
基于PSO-LSTM的重载铁路车轨桥系统随机振动响应预测方法 被引量:5
6
作者 毛建锋 李铮 +2 位作者 伍军 余志武 胡连军 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3661-3671,共11页
在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基... 在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基于粒子群优化(Particle Swarm Optimization,PSO)长短期记忆(Long Short-term Memory,LSTM)神经网络模型的重载车桥系统随机振动响应预测方法。该方法以车桥随机参数与轨道随机不平顺激励为输入,以桥梁动力响应为输出构造代理模型。首先,基于商业软件MATLAB平台构建PSO-LSTM网络模型;其次,通过建立的车-轨-桥系统随机振动分析模型计算初始样本集对应的随机动态响应,并进行模型训练,同时利用PSO算法优化LSTM结构参数;最后,使用训练好的PSO-LSTM模型对桥梁动态响应进行预测。为了验证本算法的优越性和鲁棒性,以朔黄重载铁路实测数据为例,对比本算法与BP(Back Propagation)神经网络、GRU(Gated Recurrent Unit)神经网络和LSTM神经网络的预测效率,并讨论不同车速下的预测情况,开展本模型与实测数据及有限元分析数据的对比分析。研究结果表明:在PSO优化下,LSTM模型预测结果得到一定的改善,PSO-LSTM模型拟合相关性系数可以达到0.97,其他评价误差值也均小于BP神经网络、GRU神经网络模型,本文模型可更高效准确地预测桥梁随机动力响应,可为进一步发展车-轨-桥系统随机振动响应预测理论提供技术支持。 展开更多
关键词 随机振动 响应预测 PSO算法 lstm神经网络 车轨桥系统
在线阅读 下载PDF
基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法 被引量:2
7
作者 张剑 肖禹涵 +1 位作者 周忠易 杨俊龙 《石油钻探技术》 CAS CSCD 北大核心 2024年第5期82-90,共9页
为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE ... 为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE 58-32井和FORGE 58-62井的2个公开数据集对建立的模型进行验证,并采用平均绝对误差、均方根误差、决定系数和均方误差等指标进行模型性能评估。研究结果表明,所提出TDCSO-CNN-Bi-LSTM模型平均绝对误差、均方误差和均方根误差等3个关键性能指标较好,其中决定系数大于0.980,明显优于现有的LSTM、GRU、CNN-LSTM、CNN-Bi-LSTM等方法。研究表明,所提出的TDCSO-CNN-Bi-LSTM模型在井底钻压预测方面具有出色的准确性,能够实现实时监测,并与自动钻进系统集成,实现对钻压的精准控制,不仅提高了钻井效率,还降低了钻井成本,对未来的钻井作业具有重要的实际应用价值。 展开更多
关键词 井底钻压 lstm 神经网络 优化算法 模型优化
在线阅读 下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法 被引量:6
8
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(lstm)神经网络 鲁棒性
在线阅读 下载PDF
基于改进INFO-Bi-LSTM模型的SO_(2)排放质量浓度预测 被引量:3
9
作者 王琦 柴宇唤 +2 位作者 王鹏程 刘百川 刘祥 《动力工程学报》 CAS CSCD 北大核心 2024年第4期641-649,共9页
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN... 针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。 展开更多
关键词 炉内外联合脱硫 烟气SO_(2)质量浓度 INFO算法 Bi-lstm神经网络 Circle混沌映射 自适应t分布
在线阅读 下载PDF
基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究 被引量:4
10
作者 王秋莲 欧桂雄 +3 位作者 徐雪娇 刘锦荣 马国红 邓红标 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期1052-1063,共12页
传统的切削过程功率获取需要基于复杂的切削功率模型且很少考虑刀具磨损的影响,针对此设计了一种基于变分模态分解(VMD)、麻雀搜索算法(SSA)、长短时记忆(LSTM)神经网络的考虑刀具磨损的数控铣床切削功率预测模型,该模型无需解构数控铣... 传统的切削过程功率获取需要基于复杂的切削功率模型且很少考虑刀具磨损的影响,针对此设计了一种基于变分模态分解(VMD)、麻雀搜索算法(SSA)、长短时记忆(LSTM)神经网络的考虑刀具磨损的数控铣床切削功率预测模型,该模型无需解构数控铣床运行过程的能耗机理,基于一次性的历史实验数据即可实现数控铣床切削过程功率的高精度预测。首先,采用人工智能机器视觉技术对刀具磨损图片进行分析处理,获取刀具磨损图像的数字化特征,从而得到刀具最大磨损量;然后,建立基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型,利用VMD对数控铣床运行数据进行分解,采用SSA算法对LSTM神经网络超参数进行寻优,并将分解出的铣床运行数据分量输入到LSTM神经网络中,接着将每个分量的预测值相加,得到切削功率预测值;最后以面铣加工为例,将所提出的预测模型与BP神经网络、LSTM神经网络和传统模型进行对比分析,验证了所提模型的有效性和优越性。 展开更多
关键词 切削过程功率 刀具磨损 麻雀搜索算法 长短时记忆神经网络 变分模态分解 计算机视觉技术
在线阅读 下载PDF
结合LSTM深度学习和模糊推理控制的巷道掘进机智能联合截割策略与方法 被引量:3
11
作者 王鹏江 沈阳 +3 位作者 宗凯 王东杰 吉晓冬 吴淼 《煤炭学报》 CSCD 北大核心 2024年第S2期1195-1207,共13页
煤矿巷道掘进作业是井下最危险、工作环境最为恶劣的前端生产环节。与智能综采工作面相比,巷道掘进智能化进展缓慢,“采掘失衡”严重制约了煤炭企业实现高效、智能开采。悬臂式掘进机是我国井下掘进工作面应用最为广泛的机电设备,能否... 煤矿巷道掘进作业是井下最危险、工作环境最为恶劣的前端生产环节。与智能综采工作面相比,巷道掘进智能化进展缓慢,“采掘失衡”严重制约了煤炭企业实现高效、智能开采。悬臂式掘进机是我国井下掘进工作面应用最为广泛的机电设备,能否快速精准截割煤岩直接影响巷道的掘进效率和掘进质量。为此,提出一种结合LSTM深度学习和模糊推理控制的巷道掘进机智能联合截割策略与方法,以提高掘进机的掘进效率和智能化水平。首先,通过综合分析掘进机联合截割工况,提出联合截割载荷分级标准,并依此提出一种掘进机联合控制策略。其次,根据此策略提出联合截割控制方法,通过设计LSTM深度学习神经网络控制器实现对截割煤岩载荷等级的精确识别;同时设计模糊推理控制器实现掘进机截割头和截割臂的联合智能调速。最后,基于Sim-ulink软件建立了仿真控制系统,仿真实验结果表明:该方法能够实现对常规工况和复杂工况下掘进机截割头转速和截割臂摆速的联合智能调节,控制过程响应时间在0.6s内,且基本无超调量,控制准确度高,效果好。此外,与单一控制的先进方法对比表明,提出的联合截割控制方法在缩短了响应时间的同时保证了控制方法的稳定性。通过搭建的掘进机远程测控平台设计实验验证了本方法的准确性和有效性,为掘进机器人快速智能掘进的实现提供了技术参考,为之后进一步的优化和工程应用提供了理论基础。 展开更多
关键词 悬臂式掘进机 智能截割 lstm神经网络算法 模糊控制 联合截割控制
在线阅读 下载PDF
基于ARIMA-PSO-LSTM的太阳能预测 被引量:2
12
作者 沈露露 黄晋浩 +1 位作者 花敏 周雯 《无线电通信技术》 北大核心 2024年第4期771-778,共8页
太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳... 太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳能辐照强度,其中改进的粒子群优化(Particle Swarm Optimization, PSO)算法被引入寻找长短期记忆(Long Short Term Memory, LSTM)神经网络模型的最优参数。选取自回归差分移动平均(Auto-Regressive Integrated Moving Average, ARIMA)模型来预测太阳辐照数据中的线性分量;采用PSO算法来优化LSTM神经网络模型的超参数,有助于提高模型预测的精度和鲁棒性;采用优化的LSTM神经网络模型来预测数据中的非线性分量;最后将两个模型的预测结果进行叠加。实验结果表明,新的组合模型比ARIMA、LSTM等模型,具有更高的预测精度。 展开更多
关键词 自回归差分移动平均模型 长短期记忆神经网络模型 粒子群优化算法 能量预测算法
在线阅读 下载PDF
基于CSSA-LSTM神经网络的动态称重算法的研究 被引量:3
13
作者 狄俊豪 郭晨霞 杨瑞峰 《电子测量技术》 北大核心 2024年第11期95-100,共6页
为了提高动态称重的测量精度,实现智慧牧场的实时监测和精细化管理,提出利用混沌麻雀搜索算法优化LSTM的神经网络的动态称重算法。通过动态称重台进行数据采集,并使用卡尔曼滤波算法对干扰数据进行处理。利用Tent映射策略和高斯变异后... 为了提高动态称重的测量精度,实现智慧牧场的实时监测和精细化管理,提出利用混沌麻雀搜索算法优化LSTM的神经网络的动态称重算法。通过动态称重台进行数据采集,并使用卡尔曼滤波算法对干扰数据进行处理。利用Tent映射策略和高斯变异后的麻雀搜索算法优化LSTM神经网络各参数,从而建立CSSA-LSTM神经网络模型。结果表明,CSSA-LSTM神经网络的平均绝对百分比误差在1.5%以内,平均绝对误差减少了0.874,均方根误差减少了1.1153。对比实验证明,该混合算法预测的误差最小,有效提高了动态称重的测量精度。 展开更多
关键词 动态称重 卡尔曼滤波算法 混沌麻雀搜索算法 lstm神经网络
在线阅读 下载PDF
基于MAF-GWO-LSTM算法的海浪有义波高预测模型
14
作者 陈恒轩 张雷 +1 位作者 杜传顺 张佳宁 《舰船科学技术》 北大核心 2024年第21期33-39,共7页
由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filte... 由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filter,MAF)对实测海浪数据进行处理得到有效波高的光滑趋势序列,作为预测模型的输入训练集;再选用长短时记忆神经网络LSTM作为预测浪模型,依据灰狼优化算法(Grey Wolf Optimization,GWO)对滑动窗口MA及神经网络训练过程中的参数进行自适应寻优,并以南海实测有效波高数据进行验证。研究结果表明,采用MAF滤波有利于提取海浪有效波高特征,再通过GWO-LSTM预测模型优化神经网络参数,最优参数下波高预报精度达到R^(2)=0.991 0。论文研究可为高海况下海浪有效波高预报预警提供一种有效手段。 展开更多
关键词 滑动平均滤波器 灰狼算法 海浪波高预测 长短时记忆神经网络
在线阅读 下载PDF
煤矿井下供水管道泄漏孔径识别与定位
15
作者 杜京义 陈镇 +3 位作者 张嘉伟 李晨 高瑞 王鹏 《科学技术与工程》 北大核心 2025年第8期3296-3303,共8页
为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使... 为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(lstm) 模态能量熵 遗传算法(GA) 包络熵
在线阅读 下载PDF
大坝变形GA-LSTM组合预测模型研究 被引量:11
16
作者 刘丹 吕倩 +1 位作者 胡少华 李墨潇 《安全与环境学报》 CAS CSCD 北大核心 2023年第7期2246-2253,共8页
为监测大坝运行过程中的异常状态,防范化解大坝溃坝等重大风险,基于大坝变形大样本、非线性监测数据,引入长短期记忆(Long Short Term Memory, LSTM)神经网络模型对大坝变形趋势进行预测,以测试样本的均方根误差最小为适应度函数,采用... 为监测大坝运行过程中的异常状态,防范化解大坝溃坝等重大风险,基于大坝变形大样本、非线性监测数据,引入长短期记忆(Long Short Term Memory, LSTM)神经网络模型对大坝变形趋势进行预测,以测试样本的均方根误差最小为适应度函数,采用遗传算法(Genetic Algorithm, GA)优化LSTM模型参数,建立大坝变形GA-LSTM组合预测模型。以福建水口水电站大坝为例进行验证分析,并与LSTM模型和门控循环神经网络(Gated Recurrent Unit, GRU)模型预测结果进行对比分析。分析结果表明,GA-LSTM模型的预测效果和性能更佳,且相较于LSTM模型和GRU模型各测点预测误差均有减小,平均绝对误差减小量最高达6.92%。 展开更多
关键词 安全工程 大坝变形 长短期记忆神经网络 遗传算法 预测性能 参数优化
在线阅读 下载PDF
基于LSTM的列车测速测距设备故障诊断 被引量:9
17
作者 付文秀 李弘扬 靳东明 《北京交通大学学报》 CAS CSCD 北大核心 2020年第2期9-16,共8页
列车测速测距设备是列车运行控制系统的重要组成部分,也是故障率较高的设备之一.针对测速测距设备故障诊断自动化程度低的问题,提出一种基于LSTM(Long Short-Term Memory)神经网络的列车测速测距设备故障诊断方法,利用自适应最小支持度... 列车测速测距设备是列车运行控制系统的重要组成部分,也是故障率较高的设备之一.针对测速测距设备故障诊断自动化程度低的问题,提出一种基于LSTM(Long Short-Term Memory)神经网络的列车测速测距设备故障诊断方法,利用自适应最小支持度的加权Apriori算法从测速测距设备的时间序列中提取与故障分类关联度高的时间序列,构建故障数据集;利用LSTM神经网络对故障进行分类对比,测试结果表明:在以时间序列为故障特征的条件下,LSTM分类效果优于全卷积神经网络(Fully Convolutional Neural Networks,FCNN)与循环神经网络(Recurrent Neural Network,RNN). 展开更多
关键词 车载测速测距设备 故障诊断 lstm神经网络 APRIORI算法
在线阅读 下载PDF
基于VMD-LSTM-WOA的铁路沿线风速预测模型 被引量:15
18
作者 孟建军 江相君 +1 位作者 李德仓 孟高阳 《传感器与微系统》 CSCD 北大核心 2023年第4期152-156,共5页
针对当前铁路沿线风速预测中精确度不高和模型泛化性差等问题,采用一种变分模态分解(VMD)、长短期记忆神经网络(LSTM)和鲸鱼优化算法(WOA)的组合预测模型,并通过均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等评价... 针对当前铁路沿线风速预测中精确度不高和模型泛化性差等问题,采用一种变分模态分解(VMD)、长短期记忆神经网络(LSTM)和鲸鱼优化算法(WOA)的组合预测模型,并通过均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等评价指标进行模型预测精度验证。选取多个不同时间尺度的风速数据进行实验。实验结果表明:与其他模型相比,本文模型能有效提高风速预测精度,并且有着较好的泛化性。同时VMD-LSTM-WOA预测模型能够适用于铁路沿线短期风速和超短期风速预测,能为高速铁路规范和城市轨道交通规范下的大风预警提供可靠的支持。 展开更多
关键词 铁路风速预测 变分模态分解 长短期记忆神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于WD-COA-LSTM模型的月降水量预测 被引量:9
19
作者 王文川 杨静欣 臧红飞 《水资源与水工程学报》 CSCD 北大核心 2022年第4期8-13,23,共7页
为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过... 为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过郊狼优化算法对神经网络(LSTM)模型进行参数优化;最后将各子序列预测值叠加得到月降水量预测值。将提出的模型应用于洛阳市栾川县白土镇和洛宁县故县镇两个雨量站的月降水量预测中,并与LSTM、COA-LSTM、WD-LSTM模型预测结果进行对比。结果表明:提出的WD-COA-LSTM模型的预测精度最高,说明小波分解和郊狼优化算法能有效加强LSTM模型预测的精度和泛化能力,为月降水量的预测提供了一种新的途径。 展开更多
关键词 月降水量预测 小波分解 郊狼优化算法 长短期记忆神经网络
在线阅读 下载PDF
基于地震初期的应急物资需求预测研究
20
作者 王国保 蔡水涌 +1 位作者 杨红刚 谢本凯 《地震工程学报》 北大核心 2025年第4期925-936,共12页
精准、高效地预测地震灾害中的应急物资需求,对提升救援工作的精准性和效率至关重要。文章采用间接预测方法,通过核主成分分析对预测指标进行降维,选取主成分作为长短期记忆神经网络模型的输入变量。同时,利用改进的粒子群优化算法对长... 精准、高效地预测地震灾害中的应急物资需求,对提升救援工作的精准性和效率至关重要。文章采用间接预测方法,通过核主成分分析对预测指标进行降维,选取主成分作为长短期记忆神经网络模型的输入变量。同时,利用改进的粒子群优化算法对长短期记忆神经网络模型的单元数和批处理大小进行优化,从而构建伤亡人数预测模型。此外,将预测的伤亡人数与安全库存理论相结合,建立应急物资需求预测模型。基于震级在6级以上的地震数据,构建的伤亡人数预测模型在均方误差、均方根误差和平均绝对误差等评估指标上表现优异。与改进的灰色预测模型[GM(1,1)]、粒子群优化算法与反向传播神经网络(PSO-BP)模型及卷积神经网络(CNN)模型相比,其误差分别降低了71%~97%、46%~83%和34%~62%。以2019年四川省宜宾市长宁县6级地震和2020年新疆喀什地区伽师县6.4级地震为案例,精准预测两地的伤亡人数及各类应急物资的需求量。该方法为提高地震灾害管理及救援工作的效率和响应能力提供了新的技术支持,具有重要的应用价值。 展开更多
关键词 地震灾害 应急物资 需求预测 改进粒子群优化算法 长短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部