期刊文献+
共找到570篇文章
< 1 2 29 >
每页显示 20 50 100
中国保险业系统性风险的评估与预警研究——基于Attention-LSTM模型的分析 被引量:1
1
作者 师荣蓉 杨娅 《财经理论与实践》 北大核心 2025年第2期26-34,共9页
基于保险业系统性风险传导机制和预警机制的理论分析,利用CoVaR方法评估保险业系统性风险,从微观保险机构和宏观经济环境构建Attention-LSTM模型对保险业系统性风险进行预警分析。研究发现:当遭遇重大事件冲击时,系统重要性保险机构对... 基于保险业系统性风险传导机制和预警机制的理论分析,利用CoVaR方法评估保险业系统性风险,从微观保险机构和宏观经济环境构建Attention-LSTM模型对保险业系统性风险进行预警分析。研究发现:当遭遇重大事件冲击时,系统重要性保险机构对保险业的风险溢出增加;将金融压力指数纳入风险预警体系,其预测平均绝对误差、均方根误差和平均绝对百分比误差分别降低8.59%、7.27%和4.55%;Attention-LSTM模型能捕捉风险间的关联性和传染性,在预测准确性、泛化能力和时间稳定性方面均优于传统机器学习模型。鉴于此,应建立保险业风险分区管理体系,融合深度学习模型多维度构建保险业系统性风险预警机制。 展开更多
关键词 保险业系统性风险 评估 预警 Attention-lstm模型
在线阅读 下载PDF
基于LSTM模型的宁波沿海风暴增水预报研究
2
作者 陈永平 王瑾琪 +3 位作者 徐晓武 丁骏 谭亚 宗志锋 《河海大学学报(自然科学版)》 北大核心 2025年第5期162-169,共8页
为提高宁波沿海风暴潮位预报的时效性与精度,基于LSTM模型开展了风暴潮引起的增水智能预报研究。基于历史台风和虚拟台风信息,利用ADCIRC水动力模型计算了台风期间宁波沿海潮位站的风暴增水,构建了风暴增水样本数据库;应用LSTM模型对宁... 为提高宁波沿海风暴潮位预报的时效性与精度,基于LSTM模型开展了风暴潮引起的增水智能预报研究。基于历史台风和虚拟台风信息,利用ADCIRC水动力模型计算了台风期间宁波沿海潮位站的风暴增水,构建了风暴增水样本数据库;应用LSTM模型对宁波沿海风暴增水样本数据进行训练,通过样本优化与参数调优,建立了稳健高效的宁波沿海风暴增水智能预报模型。202212台风“梅花”检验结果表明,当训练样本超过400场时,所构建的预报模型可以较好地实现宁波沿海风暴增水1~12 h的短期预报,当预见期超过12 h后,预报结果与实测数据将可能出现较大偏差。 展开更多
关键词 风暴增水 虚拟台风 智能预报 lstm模型 宁波沿海
在线阅读 下载PDF
基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测
3
作者 李亚 尚轩丞 +1 位作者 王海瑞 朱贵富 《计量学报》 北大核心 2025年第10期1433-1445,共13页
基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算... 基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算法优化模型超参数。应用PHM2010数控铣床刀具数据集验证训练模型的预测精度。实验结果表明,该模型的决定系数相较于原CoAtNet和LSTM网络模型平均提升了12.73%、16.44%。 展开更多
关键词 几何量计量 刀具磨损 CoAtNet-lstm模型 长短期时间记忆网络 Hyperband算法 孤立森林算法
在线阅读 下载PDF
基于CKAN-IWTC-LSTM的海上风电功率预测方法
4
作者 田书欣 姜皓喆 +3 位作者 秦世耀 符杨 杨喜军 李振坤 《智慧电力》 北大核心 2025年第11期91-98,共8页
针对海洋极端环境复杂性、空气动力学非线性、海上风电功率的强随机波动性等特点,提出一种融合Kolmogorov-Arnold网络架构的改进小波卷积长短期记忆网络(CKAN-IWTC-LSTM)海上风电功率预测方法。首先,采用引入星型聚合分发模块(STAD)的... 针对海洋极端环境复杂性、空气动力学非线性、海上风电功率的强随机波动性等特点,提出一种融合Kolmogorov-Arnold网络架构的改进小波卷积长短期记忆网络(CKAN-IWTC-LSTM)海上风电功率预测方法。首先,采用引入星型聚合分发模块(STAD)的改进小波卷积(IWTC)特征提取方法,以增强海上多维气象特征的交互表征;其次,构建基于KAN架构强化输出的海上风电LSTM预测模型,挖掘海上风电功率数据时序变化规律;最后,建立多维度评估指标体系,并基于沙普利加性解释(SHAP)方法量化时序特征与环境特征对海上风电功率的贡献度。算例分析表明,所提方法能够有效实现海上风电功率的精准预测。 展开更多
关键词 海上风电 CKAN-IWTC-lstm模型 小波卷积 功率预测 沙普利加性原理
在线阅读 下载PDF
基于调和分析及VMD-LSTM混合模型的甬江河口水位预报方法
5
作者 陈永平 韩韬 +3 位作者 邱超 甘敏 谭亚 王瑾琪 《河海大学学报(自然科学版)》 北大核心 2025年第2期1-10,共10页
为解决甬江感潮河段潮位预报总体精度偏低的问题,构建了一种基于经典调和分析(T_TIDE)、变分模态分解(VMD)和长短时记忆神经网络(LSTM)的混合模型(VMD-LSTM混合模型)。VMD-LSTM混合模型采用T_TIDE程序包对甬江河口逐时水位数据进行回报... 为解决甬江感潮河段潮位预报总体精度偏低的问题,构建了一种基于经典调和分析(T_TIDE)、变分模态分解(VMD)和长短时记忆神经网络(LSTM)的混合模型(VMD-LSTM混合模型)。VMD-LSTM混合模型采用T_TIDE程序包对甬江河口逐时水位数据进行回报(即潮位),用实测水位减去潮位得到相应余水位,并采用VMD模型将余水位分解为13个本征模函数(IMF),依次对应D0~D12潮族,采用LSTM模型分别训练余水位的各个IMF分量和潮位并分别向后预报12~48h,各个IMF分量和潮位的预报值之和即为河口水位的预测值。结果表明:VMD模型可对甬江河口余水位中D0~D12潮族波动进行完全分离;VMD-LSTM混合模型12、24、36、48h短期水位预报的均方根误差(RMSE)比LSTM模型最多分别降低了0.15、0.13、0.16、0.16m;VMD-LSTM混合模型在D0、D2潮族频带的误差修正最明显,相比LSTM模型,可分别将D0、D2潮族的谱峰预报误差最多降低0.05、0.04m·d^(0.5)。 展开更多
关键词 甬江口 河口潮汐 变分模态分解 lstm模型 调和分析 水位预报
在线阅读 下载PDF
基于AFSA-LSTM代理模型的风-车-桥系统气动力预测方法
6
作者 毛建锋 张广文 +3 位作者 李铮 余志武 王喜 伍军 《中南大学学报(自然科学版)》 北大核心 2025年第6期2550-2561,共12页
在侧风影响下,高速列车在桥梁上的气动力是决定其运行安全的关键要素。气动力的变化规律受风速和风向的影响较大,使得长期的预测分析较为复杂。本文提出一种基于人工鱼群算法(AFSA)优化的长短期记忆网络(LSTM)代理模型,用于预测风车桥... 在侧风影响下,高速列车在桥梁上的气动力是决定其运行安全的关键要素。气动力的变化规律受风速和风向的影响较大,使得长期的预测分析较为复杂。本文提出一种基于人工鱼群算法(AFSA)优化的长短期记忆网络(LSTM)代理模型,用于预测风车桥在不同风速和风向条件下的气动特性。该模型以时间t_(1)~t_(2)时气动力系数为输入,以t_(2)~t_n时气动力系数为输出。首先,基于开源MATLAB库建立AFSA-LSTM网络框架;其次,通过构建的不同风攻角以及不同风速下的车-桥系统气动力模拟数据库对代理模型进行训练与预测,其中,AFSA用于优化LSTM网络的超参数,以提高模型的预测精度和泛化能力。研究结果表明:LSTM网络能够处理不同风速和风攻角下的车桥系统气动力,从而可预测车桥系统在侧风下的气动力系数;AFSA-LSTM代理模型可以作为计算流体力学(CFD)模型的近似,用于风洞试验、CFD模拟和现场监测等,为风车桥系统的设计、优化和维护提供科学依据;该方法在不同风攻角、不同风速下预测结果良好,具有广阔应用前景。 展开更多
关键词 侧风 车桥系统 AFSA-lstm代理模型 气动力预测
在线阅读 下载PDF
基于SVR-LSTM的人体上肢运动遮挡轨迹补偿方法
7
作者 彭金柱 刘涵菲 卞英楠 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期1-7,共7页
在人机协作过程中,由于光照条件等环境因素和机器人设备摆放等遮挡原因,导致使用基于视觉的运动捕捉设备对人体运动进行捕捉时时间序列的轨迹数据有缺失,进而导致意图识别不准确,增加了机器人运动的不确定性。因此,提出了一种基于支持... 在人机协作过程中,由于光照条件等环境因素和机器人设备摆放等遮挡原因,导致使用基于视觉的运动捕捉设备对人体运动进行捕捉时时间序列的轨迹数据有缺失,进而导致意图识别不准确,增加了机器人运动的不确定性。因此,提出了一种基于支持向量回归(support vector regression,SVR)和长短期记忆(long short-term memory,LSTM)的人体上肢运动时间序列轨迹缺失补偿方法。采用网格搜索法对SVR模型中的参数进行优化来完善历史样本数据集,结合长短期记忆网络对短、长时间序列轨迹缺失的预测补全更精确的优势,将SVR模型补全的历史样本数据集输入LSTM模型训练,进一步降低补偿误差。实验结果表明,在三维空间350 mm的运动尺度范围内,轨迹缺失程度为10%时,SVR-LSTM模型补偿轨迹的平均误差是0.14 mm;轨迹缺失程度为30%时,SVR-LSTM模型补偿轨迹的平均误差是0.47 mm。 展开更多
关键词 遮挡轨迹 时间序列 意图识别 轨迹补偿 SVR-lstm模型
在线阅读 下载PDF
基于CNN-LSTM-Attention的中国省域交通运输业碳达峰预测研究
8
作者 杨青 江宇航 +3 位作者 吴婵媛 段召琳 陈梦柯 刘星星 《安全与环境学报》 北大核心 2025年第10期4064-4075,共12页
交通运输业减排是实现全局减排目标的关键。研究基于改进的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型分析影响交通运输业碳排放的主要因素,设置低碳、基准和高碳3种... 交通运输业减排是实现全局减排目标的关键。研究基于改进的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型分析影响交通运输业碳排放的主要因素,设置低碳、基准和高碳3种情景方案,利用卷积神经网络-长短期记忆网络-注意力机制(Convolutional Neural Networks-Long short-Term Memory-Attention Mec.hanism,CNN-LSTM-Attention)交通运输业碳排放预测模型对中国30个省、自治区、直辖市2022—2035年交通运输业碳排放进行预测。结果显示:人口情况、经济水平和交通运输等3个维度的影响因素对交通运输业碳排放具有正向驱动作用,能源技术维度的影响因素则起负向驱动作用;CNN-LSTM-Attention交通运输业碳排放预测模型提升了模型在小样本数据集的预测能力,预测效果较好;低碳、基准和高碳3种情景下中国交通运输业的碳排放峰值将晚于2030年的总排放峰值目标实现;各省在碳排放峰值和达峰时间上存在异质性,应采取差异化、精准化的政策策略,局部上分区域、分梯次达峰,以整体上实现碳达峰目标。 展开更多
关键词 环境工程学 交通运输业 碳达峰 STIRPAT模型 CNN-lstm-Attention模型 情景分析
在线阅读 下载PDF
基于DBSCAN-LERP-LSTM的桥梁静力水准垂直位移监测异常值检测与分析
9
作者 潘国兵 虞洪兵 +2 位作者 宿林 张顺涛 吴畏 《重庆交通大学学报(自然科学版)》 北大核心 2025年第8期25-32,共8页
针对桥梁沉降数据受环境变化和传感器故障影响而产生噪声的问题,提出了一种基于DBSCAN-LERP-LSTM的分析方法,以提高数据可靠性和分析准确性。以某高速公路斜拉桥2021—2023年的静力水准仪监测数据为例,先用DBSCAN算法,邻域半径ε为40,... 针对桥梁沉降数据受环境变化和传感器故障影响而产生噪声的问题,提出了一种基于DBSCAN-LERP-LSTM的分析方法,以提高数据可靠性和分析准确性。以某高速公路斜拉桥2021—2023年的静力水准仪监测数据为例,先用DBSCAN算法,邻域半径ε为40,领域内最少点数M为20,剔除9.8%异常值并线性插值填补缺失值,再通过时间序列分解发现2022年底沉降值约-0.4 mm,最后构建LSTM模型并用PSO、SSA、ACO的3种方法优化参数。结果表明:PSO-LSTM模型最优,均方根误差(R MSE)为0.419,平均绝对误差(M AE)为0.337,平均绝对百分比误差(M APE)为0.142%,为静力水准仪监测系统提供了有效的数据处理流程,对桥梁长期安全运营意义重大。 展开更多
关键词 桥梁工程 桥梁健康监测 DBSCAN模型 lstm模型 参数优化
在线阅读 下载PDF
基于1DCNN和LSTM融合的超宽带NLoS/LoS识别方法研究
10
作者 郑恩让 孟鑫 +3 位作者 姜苏英 薛晶 张毅 李强 《通信学报》 北大核心 2025年第6期285-302,共18页
为提升超宽带(UWB)定位系统在非视距(NLoS)条件下的测距精度与定位性能,提出一种基于一维卷积-卷积长短期记忆(LSTM)注意力网络(1DCNN-CLANet)的深度学习模型。该模型首先利用卷积神经网络(CNN)提取通道脉冲响应(CIR)的空间特征,并利用... 为提升超宽带(UWB)定位系统在非视距(NLoS)条件下的测距精度与定位性能,提出一种基于一维卷积-卷积长短期记忆(LSTM)注意力网络(1DCNN-CLANet)的深度学习模型。该模型首先利用卷积神经网络(CNN)提取通道脉冲响应(CIR)的空间特征,并利用长短期记忆网络捕捉CIR的时序特征。其次,利用CNN深度挖掘距离数据、信号振幅、最大噪声强度等额外特征。最后,引入注意力机制并构建CIR分支和额外特征分支的融合模型,实现对UWB信号的非视距/视距识别。实验结果表明,复杂环境下1DCNN-CLANet的二分类和四分类识别准确率分别为99.51%和98.47%,优于其他方案。该模型在UWB定位系统中表现出良好的非视距识别能力,具有较强的应用前景。 展开更多
关键词 超宽带 非视距 深度学习模型 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于SARIMA-LSTM组合模型的北极航道冰情预测与适航性分析
11
作者 胡麦秀 胡若兰 《极地研究》 北大核心 2025年第3期585-602,共18页
本文基于1991—2021年北极航道海冰密集度和厚度的观测数据以及国际海事组织(International Maritime Organization,IMO)最新发布的极地操作限制评估风险指数系统(POLARIS),对北极航道的综合航行风险值进行分析,并运用SARIMA-LSTM组合... 本文基于1991—2021年北极航道海冰密集度和厚度的观测数据以及国际海事组织(International Maritime Organization,IMO)最新发布的极地操作限制评估风险指数系统(POLARIS),对北极航道的综合航行风险值进行分析,并运用SARIMA-LSTM组合模型对北极航道冰情开展中长期变化趋势预测,同时评估两种具有代表性船型在航道上的通航能力。结果表明:(1)2022—2035年北极航道的冰情与前10年相比,呈现一定程度的减轻,包括海冰密集度和厚度均值分别下降了11.31%和4.82%,夏秋两季冰情变化更为明显;(2)基于IMO最新发布的POLARIS冰区航行风险评估系统,IACS PC7冰级船与IACS PC3冰级船的综合航行风险均不断下降;7—12月IACS PC7冰级船在北极航道各海区风险指数结果大于0,船舶在此期间航行风险是可控的和可正常操作的;而IACS PC3冰级船则在全年各海区风险指数结果大于0,全海域航行风险是可控的和可正常操作的;(3)基于船舶航行实际模拟设定的通航标准,对于不同冰级船在北极航道的可通航时间预测则存在着较大差异性,其中IACS PC7冰级船的可通航时间没有出现明显变化,依然为每年8—11月;而IACS PC3冰级船的可通航时间则从每年7月至翌年1月延长到每年6月至翌年2月。 展开更多
关键词 北极东北航道 冰情预测 适航性 SARIMA-lstm组合模型
在线阅读 下载PDF
基于LightGBM和LSTM模型的电力大数据异常用电检测方法研究
12
作者 杨志东 丁建武 +2 位作者 陈广久 康晓婧 盛萌 《电测与仪表》 北大核心 2025年第1期110-115,共6页
随着双碳经济的提出,智能电网正朝着节能减排的方向发展,而用户的异常用电造成电力资源严重流失。针对传统异常用电检测方法精度低、运行效率慢等问题,提出了一种将LightGBM模型与改进的长短期记忆网模型相结合用于异常用电检测。通过... 随着双碳经济的提出,智能电网正朝着节能减排的方向发展,而用户的异常用电造成电力资源严重流失。针对传统异常用电检测方法精度低、运行效率慢等问题,提出了一种将LightGBM模型与改进的长短期记忆网模型相结合用于异常用电检测。通过采样和Lightgbm模型相结合进行异常检测,并通过改进长短期记忆网模型给出异常用电类别。通过试验分析了所提方法的优点。结果表明,与传统的检测方法相比,该方法能够快速有效地检测异常用户,检测准确率为98.64%。同时对异常数据进行有效分类,综合分类准确率为96.60%。为异常检测技术的发展提供了一定的参考。 展开更多
关键词 电力大数据 异常用电 Lightgbm模型 lstm模型 双碳经济
在线阅读 下载PDF
LSTM和EnKF在农业土壤降雨径流模拟中的应用
13
作者 林琳 高肇天 +2 位作者 丁一家 胡小龙 张中彬 《湖北农业科学》 2025年第5期70-79,共10页
降雨量与径流的关系对农业地区的水资源调配及水土资源保护具有重要意义,但在小流域范围内,不同土地利用类型下降雨径流过程难以预测。基于LSTM模型、新安江模型以及EnKF技术,探讨数据驱动机器学习模型对不同土地利用方式下降雨径流过... 降雨量与径流的关系对农业地区的水资源调配及水土资源保护具有重要意义,但在小流域范围内,不同土地利用类型下降雨径流过程难以预测。基于LSTM模型、新安江模型以及EnKF技术,探讨数据驱动机器学习模型对不同土地利用方式下降雨径流过程的模拟效果,并与SWAT水文模型模拟效果进行对比;研究EnKF对新安江模型不同水文参数集合的估计效果和滤波估计参数的规律,并基于率定的参数对不同农业土地利用类型的径流过程进行模拟。结果表明,径流在土面坡度略小时的高径流情况以及在土面坡度较大时的低径流过程更易被学习到;SWAT模型模拟精度及稳定性比LSTM模型差,但其可以在一定程度反映当地土壤水文条件,便于进行成因分析;EnKF技术具有参数更新和参数估计功能,能够优化新安江水文模型的径流模拟效果。 展开更多
关键词 降雨径流模拟 数据驱动 数据同化 lstm ENKF 新安江模型 土地利用方式 优化预测
在线阅读 下载PDF
基于特征选择与Transformer-LSTM的滚动轴承寿命预测 被引量:2
14
作者 李沁远 雷文平 +2 位作者 闫灏 娄永威 陈阳 《组合机床与自动化加工技术》 北大核心 2025年第2期200-206,211,共8页
滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。针对以往剩余使用寿命(RUL)预测方法对轴承退化信息挖掘不充分、忽视不同特征贡献度和不同特征组合对预测模型精度的影响,提出一种基于特征选择与Transformer-LSTM的剩... 滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。针对以往剩余使用寿命(RUL)预测方法对轴承退化信息挖掘不充分、忽视不同特征贡献度和不同特征组合对预测模型精度的影响,提出一种基于特征选择与Transformer-LSTM的剩余使用寿命预测模型。首先基于单调性、趋势性以及最大相关最小冗余特征选择算法对振动信号的时域、频域、时频域特征进行重要性排序和筛选,从而捕获特征与剩余寿命以及特征之间的相互的关系。然后将筛选后的特征输入Transformer-LSTM预测模型中,深度挖掘输入特征与RUL之间的复杂映射关系,从而更准确地进行预测。通过公开的轴承数据集进行实验验证,与其他RUL预测方法相比,所提方法的预测性能更优越。 展开更多
关键词 剩余使用寿命 特征选择 最大相关最小冗余 Transformer-lstm模型
在线阅读 下载PDF
CNN-LSTM在桥梁预警机制的研究与应用 被引量:1
15
作者 潘浩 李富年 +2 位作者 余兴盛 秦寰宇 陈志丹 《计算机应用与软件》 北大核心 2025年第3期29-33,40,共6页
为了更好地满足桥梁健康监测系统的需求,提高桥梁健康监测系统的性能,将深度学习与时序数据库InfluxDB结合起来构建新型桥梁健康监测系统的预警机制,提高现代桥梁健康监测系统的危险感知能力。以赣江特大桥为背景,将卷积神经网络CNN与... 为了更好地满足桥梁健康监测系统的需求,提高桥梁健康监测系统的性能,将深度学习与时序数据库InfluxDB结合起来构建新型桥梁健康监测系统的预警机制,提高现代桥梁健康监测系统的危险感知能力。以赣江特大桥为背景,将卷积神经网络CNN与长短时记忆网络LSTM结合起来构建CNN-LSTM模型,对桥梁的挠度数据进行预测。通过对实验结果分析发现CNN-LSTM模型能够有效预测出桥梁的挠度数据,在置信区间为±0.1 mm的情况下,准确率达到92.8%,在预测未来十分钟的挠度数据中,均方根误差RMSE为0.1097。实践表明时序数据库InfluxDB与CNN-LSTM模型的融合增强桥梁健康监测系统对潜在威胁的感知能力,有效提高桥梁健康监测系统的预警报警机制。 展开更多
关键词 桥梁工程 长短时记忆网络 卷积神经网络 CNN-lstm模型 InfluxDB
在线阅读 下载PDF
基于MSGWO-LSTM的车桥非线性系统地震响应预测研究 被引量:1
16
作者 刘汉云 王子逸 +4 位作者 韩艳 王力东 胡朋 国巍 余志武 《铁道科学与工程学报》 北大核心 2025年第2期734-747,共14页
强震下高铁桥梁结构易进入非线性阶段,导致系统响应增大难预测,可能威胁行车安全。为此,提出融合多策略灰狼优化-长短期记忆网络(MSGWO-LSTM)代理模型,提升高速铁路车-桥耦合非线性系统地震响应预测精度。建立车桥耦合系统OpenSees非线... 强震下高铁桥梁结构易进入非线性阶段,导致系统响应增大难预测,可能威胁行车安全。为此,提出融合多策略灰狼优化-长短期记忆网络(MSGWO-LSTM)代理模型,提升高速铁路车-桥耦合非线性系统地震响应预测精度。建立车桥耦合系统OpenSees非线性模型,基于大量地震动动力分析,构建桥梁位移、车体加速度和轮轨力响应数据库。在传统LSTM代理模型基础上,引入Dropout层以防止模型训练过拟合,引入灰狼优化算法(GWO)进行超参数自动选优,从而构建并训练了GWO-LSTM代理模型。采用多类评判指标,考虑结构线性/非线性、不同车速等工况,对比传统LSTM和GWOLSTM这2个代理模型的预测效果,发现GWO-LSTM在部分工况不满足需求,故融合多策略提出MSGWO-LSTM代理模型,进一步提升模型的预测精度。研究结果表明:GWO-LSTM代理模型预测的R^(2)稳定在0.95~0.99之间,MAE、MSE和RMSE等评价指标均接近0,且MAPE指标大多数控制在1%左右,明显优于传统LSTM代理模型,说明GWO-LSTM显著提升了车-桥耦合系统地震响应预测精度。相比单输入单输出模式,考虑多变量相互影响的多输入多输出模式所构建的代理模型的非线性适应性与泛化性更好。在多输入多输出和非线性工况下,GWO-LSTM模型预测响应有小部分预测指标超过10%限值,而MSGWO-LSTM所有预测指标均小于限值,进一步提升了模型的预测精度和泛化能力。 展开更多
关键词 桥梁工程 地震响应预测 lstm代理模型 高速铁路 OPENSEES
在线阅读 下载PDF
基于Transformer和LSTM算法的河套灌区土壤水分预测研究 被引量:1
17
作者 王钥 郑方元 +3 位作者 雍婷 查元源 周龙才 徐祥森 《节水灌溉》 北大核心 2025年第2期1-8,14,共9页
土壤水是土壤中的关键指标,其变化直接影响着作物生长,并影响着水资源利用的管理决策。因此,准确地预测土壤水分有利于对农业水资源进行合理的规划利用。使用深度学习算法进行土壤水分预测在当前的农业、水资源管理和生态学等领域具有... 土壤水是土壤中的关键指标,其变化直接影响着作物生长,并影响着水资源利用的管理决策。因此,准确地预测土壤水分有利于对农业水资源进行合理的规划利用。使用深度学习算法进行土壤水分预测在当前的农业、水资源管理和生态学等领域具有重要性。深度学习算法能够从大规模数据中学习土壤水分的复杂模式和时空关系,为土壤水的准确预测提供了新的机会。为了探索新兴深度学习方法Transformer在土壤水分预测中的有效性,选择河套灌区义长灌域为研究区域,利用地下水位观测数据、气象数据、SMAP土壤水数据等作为训练数据,设置了1、5、10 d共3种数据滞后情况,验证Transformer算法在土壤水时间序列预测任务中的有效性,并与目前广泛应用于时序预测任务中的LSTM进行对比。研究表明Transformer在土壤水分时间序列预测任务中具有更好的预测能力,相比于LSTM,其R^(2)平均提升约0.181,RMSE平均下降27.6%。同时,Transformer在应对滞后变化带来的影响时更具鲁棒性,在3种数据滞后情况下Transformer的预测平均R^(2)分别比LSTM高出了0.121、0.167、0.256,站点平均RMSE分别降低了30.7%、28.6%、23.5%。此外,Transformer对于土壤水序列中的非线性信息的提取能力更强,对于高频振幅的土壤水时间序列Transformer拥有更强的预测能力。 展开更多
关键词 土壤水分预测 深度学习 时序预测 Transformer模型 lstm模型 数据滞后
在线阅读 下载PDF
数控铣床主轴热误差Bi-LSTM预测建模 被引量:1
18
作者 马宏宇 尹志宏 +2 位作者 叶愈 南朋涛 朱升硕 《机床与液压》 北大核心 2025年第14期51-57,共7页
为探究数控铣床复杂热源导致的主轴温升与热误差之间的非线性映射关系,提出一种基于双向长短期记忆神经网络(Bi-LSTM)的主轴热误差预测模型。以国产某型号精密数控铣床主轴单元为研究对象,采用激光位移传感器对主轴空转状态下的轴向热... 为探究数控铣床复杂热源导致的主轴温升与热误差之间的非线性映射关系,提出一种基于双向长短期记忆神经网络(Bi-LSTM)的主轴热误差预测模型。以国产某型号精密数控铣床主轴单元为研究对象,采用激光位移传感器对主轴空转状态下的轴向热误差进行测量,借助温度传感器采集主轴关键温度测点的温度。采用萨维茨基-戈莱滤波器对主轴温升、热误差数据进行滤波降噪处理,使用手肘法确定最佳聚类数,利用模糊C均值聚类结合灰色关联度分析(FCM+GRA)方法完成温度敏感点的选取,避免温度测点之间多重共线性问题。最后,以主轴轴向热误差和温度敏感点温升数据为输入,建立主轴热误差Bi-LSTM预测模型,并基于平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和相关性系数R 2对模型的预测效果进行评估。结果表明:与LSTM(单向长短期记忆神经网络)、GRU(门控循环单元)和BPNN(反向传播神经网络)相比,Bi-LSTM预测模型的MAE分别降低了18.5%、21.8%、44.1%,RMSE分别降低了9.5%、20.2%、43.8%。因此,Bi-LSTM主轴热误差预测模型具有更高的鲁棒性和准确性。 展开更多
关键词 数控机床 主轴热误差 FCM+GRA算法 Bi-lstm模型 热误差预测
在线阅读 下载PDF
基于NeuralProphet-LSTM模型的碳价预测研究 被引量:1
19
作者 蔡远航 冯建新 +3 位作者 王艳青 李婉君 丁元明 胡越 《全球能源互联网》 北大核心 2025年第2期239-249,共11页
随着人类活动的不断扩展,温室气体的排放量也在持续增长,加剧了碳环境容量的稀缺程度,提高了对碳排放权进行定价的强烈需求。碳市场交易价格作为发挥碳市场功能的核心要素,关乎碳市场的稳定运行和碳减排效率。碳市场交易价格的准确预测... 随着人类活动的不断扩展,温室气体的排放量也在持续增长,加剧了碳环境容量的稀缺程度,提高了对碳排放权进行定价的强烈需求。碳市场交易价格作为发挥碳市场功能的核心要素,关乎碳市场的稳定运行和碳减排效率。碳市场交易价格的准确预测对有效开展碳资产投资和寻求最低碳减排成本具有重要的意义。为此,提出一种基于NeuralProphet-LSTM(long short-term memory,长短期记忆)模型的新型碳价格预测方法:首先使用NeuralProphet对碳价序列进行趋势、季节性效应、事件和节假日效应以及自回归效应的模块分解并初步预测;之后使用其预测结果计算残差放入LSTM中进行更深层次的信息挖掘;最后将LSTM对残差的预测通过组件加法与NeuralProphet预测结果组合,完成碳价序列信息的融合。针对欧盟碳市场和中国湖北碳市场进行预测,结果显示该模型的预测性能超过了其他模型,展现出较高的应用价值。 展开更多
关键词 碳价预测 人工智能 混合模型 NeuralProphet lstm
在线阅读 下载PDF
变分模态分解下融合时序InSAR沉降监测的HPO-LSTM预测模型 被引量:1
20
作者 陈兰兰 范永超 +1 位作者 肖海平 夏益强 《有色金属科学与工程》 北大核心 2025年第2期297-305,共9页
InSAR技术是实现大范围矿区地表沉降分析的重要手段和方法,准确预测地表沉降对预防地质灾害具有重要意义。考虑到InSAR技术提取的矿区地表沉降数据存在较强的波动性和非线性,以及长短期时间记忆(Long Short-Term Memory,LSTM)网络模型... InSAR技术是实现大范围矿区地表沉降分析的重要手段和方法,准确预测地表沉降对预防地质灾害具有重要意义。考虑到InSAR技术提取的矿区地表沉降数据存在较强的波动性和非线性,以及长短期时间记忆(Long Short-Term Memory,LSTM)网络模型的超参数难以确定的问题,本文提出一种变分模态分解(VMD)结合猎食者算法(Hunter-Prey Optimizer,HPO)优化LSTM的地表沉降预测模型,以某矿为研究对象,通过VMD算法将矿区沉降信息分解为多个模态分量,然后使用HPOLSTM模型对这些模态分量进行预测,并与InSAR监测结果进行对比分析。结果表明:与VMD-BP和VMD-ELM模型相比,该方法的预测效果更好,平均绝对误差最少降低85.41%,均方根误差最少降低85.02%,平均绝对百分比误差最少降低87.05%,表明该方法具有更强的可靠性和可行性。 展开更多
关键词 时序InSAR 沉降监测 变分模态分解 HPO-lstm预测模型
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部