液压系统压力传感器作为挖掘机自动控制系统的核心元件,其可靠性直接影响整机操控性能。针对复杂恶劣工况下压力传感器失效导致控制系统信号缺失的关键问题,提出一种基于深度学习的高精度压力数据实时预测方法。首先,基于37吨级挖掘机...液压系统压力传感器作为挖掘机自动控制系统的核心元件,其可靠性直接影响整机操控性能。针对复杂恶劣工况下压力传感器失效导致控制系统信号缺失的关键问题,提出一种基于深度学习的高精度压力数据实时预测方法。首先,基于37吨级挖掘机电液比例控制系统构建试验平台,采集实际挖装作业工况下多源传感器数据;其次,采用最大信息系数法进行特征相关性分析,将125维原始数据降维至10维有效特征,并通过卡尔曼滤波与标准化处理构建高质量数据集;进而设计基于注意力机制的特征权重分配模块,结合麻雀搜索算法(sparrow search algorithm,SSA)优化长短期记忆神经网络(long short term memory,LSTM)的超参数配置,构建SSA-LSTM-Attention融合预测模型。通过对比卷积神经网络(convolutional neural network,CNN)、循环神经网络(gate recurrent unit,GRU)、LSTM等典型预测模型的实验验证,该方法在关键压力数据预测中展现出显著优势。实验结果表明,相较于传统LSTM模型,SSA-LSTM-Attention模型的平均绝对误差和均方根误差分别降低54.45%和54.56%。研究证实所提方法能有效解决传感器失效工况下的数据补偿问题,为工程机械智能控制系统容错设计提供理论支撑。展开更多
短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精...短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。展开更多
文摘液压系统压力传感器作为挖掘机自动控制系统的核心元件,其可靠性直接影响整机操控性能。针对复杂恶劣工况下压力传感器失效导致控制系统信号缺失的关键问题,提出一种基于深度学习的高精度压力数据实时预测方法。首先,基于37吨级挖掘机电液比例控制系统构建试验平台,采集实际挖装作业工况下多源传感器数据;其次,采用最大信息系数法进行特征相关性分析,将125维原始数据降维至10维有效特征,并通过卡尔曼滤波与标准化处理构建高质量数据集;进而设计基于注意力机制的特征权重分配模块,结合麻雀搜索算法(sparrow search algorithm,SSA)优化长短期记忆神经网络(long short term memory,LSTM)的超参数配置,构建SSA-LSTM-Attention融合预测模型。通过对比卷积神经网络(convolutional neural network,CNN)、循环神经网络(gate recurrent unit,GRU)、LSTM等典型预测模型的实验验证,该方法在关键压力数据预测中展现出显著优势。实验结果表明,相较于传统LSTM模型,SSA-LSTM-Attention模型的平均绝对误差和均方根误差分别降低54.45%和54.56%。研究证实所提方法能有效解决传感器失效工况下的数据补偿问题,为工程机械智能控制系统容错设计提供理论支撑。
文摘短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。