传统传输方法受到网络配置及策略影响,限制了远程桌面协议端口、数据库端口等数据的传输,导致异常数据辨识的准确性较低。为此引进长短期记忆(Long Short Term Memory,LSTM)算法,以国产麒麟系统为例,开展网络异常数据辨识方法的设计。...传统传输方法受到网络配置及策略影响,限制了远程桌面协议端口、数据库端口等数据的传输,导致异常数据辨识的准确性较低。为此引进长短期记忆(Long Short Term Memory,LSTM)算法,以国产麒麟系统为例,开展网络异常数据辨识方法的设计。引入网络异常数据变化程度系数,建立网络异常数据的特征分布函数以此量化异常数据的特征,计算国产麒麟系统网络异常节点权重。将节点权重作为输入,利用LSTM算法对时序数据进行学习,从而识别系统异常节点特征,并得到识别结果。结合异常节点特征,计算国产麒麟系统网络异常数据的综合特征值,综合运用异常数据的状态空间以及与之相关的测量值和信息熵,输出最具有代表性的异常数据。基于此,实现对网络传输节点异常数据的辨识定位。对比实验结果表明,设计的方法不仅可以提高传输数据异常辨识的时效性,还可以精准划分正常数据与异常数据。展开更多
空调热交换器性能异常检测技术是快速判断民机空调系统运行状态并合理安排维修任务的关键,传统的异常检测方法难以有效处理高维时序数据,无法实现系统早期故障预警。为此,本文提出了一种基于长短期记忆网络(LSTM,long-short term memory...空调热交换器性能异常检测技术是快速判断民机空调系统运行状态并合理安排维修任务的关键,传统的异常检测方法难以有效处理高维时序数据,无法实现系统早期故障预警。为此,本文提出了一种基于长短期记忆网络(LSTM,long-short term memory)与自编码器(AE,autoencoder)模型的无监督异常检测方法,用以识别民机空调系统异常运行状态。首先,基于民机空调系统原始传感器参数构建表征空调热交换器性能的特征监测参数;其次,构建LSTM-AE模型进行数据特征重构并计算重构误差;最后,使用孤立森林(iForest, isolation forest)进行无监督异常监测。将本文构建的无监督异常检测方法与传统方法对比,并建立模型评估指标,验证结果表明,所构建的模型方法可以对民机空调热交换器性能异常状态进行有效检测。展开更多
文摘传统传输方法受到网络配置及策略影响,限制了远程桌面协议端口、数据库端口等数据的传输,导致异常数据辨识的准确性较低。为此引进长短期记忆(Long Short Term Memory,LSTM)算法,以国产麒麟系统为例,开展网络异常数据辨识方法的设计。引入网络异常数据变化程度系数,建立网络异常数据的特征分布函数以此量化异常数据的特征,计算国产麒麟系统网络异常节点权重。将节点权重作为输入,利用LSTM算法对时序数据进行学习,从而识别系统异常节点特征,并得到识别结果。结合异常节点特征,计算国产麒麟系统网络异常数据的综合特征值,综合运用异常数据的状态空间以及与之相关的测量值和信息熵,输出最具有代表性的异常数据。基于此,实现对网络传输节点异常数据的辨识定位。对比实验结果表明,设计的方法不仅可以提高传输数据异常辨识的时效性,还可以精准划分正常数据与异常数据。
文摘空调热交换器性能异常检测技术是快速判断民机空调系统运行状态并合理安排维修任务的关键,传统的异常检测方法难以有效处理高维时序数据,无法实现系统早期故障预警。为此,本文提出了一种基于长短期记忆网络(LSTM,long-short term memory)与自编码器(AE,autoencoder)模型的无监督异常检测方法,用以识别民机空调系统异常运行状态。首先,基于民机空调系统原始传感器参数构建表征空调热交换器性能的特征监测参数;其次,构建LSTM-AE模型进行数据特征重构并计算重构误差;最后,使用孤立森林(iForest, isolation forest)进行无监督异常监测。将本文构建的无监督异常检测方法与传统方法对比,并建立模型评估指标,验证结果表明,所构建的模型方法可以对民机空调热交换器性能异常状态进行有效检测。