期刊文献+
共找到298篇文章
< 1 2 15 >
每页显示 20 50 100
基于RK-LS-SVM求常微分方程的近似解
1
作者 胡蝶 吴俊 +1 位作者 肖海霞 黄尚柱 《湖北汽车工业学院学报》 2025年第1期20-22,27,共4页
针对线性常微分方程的初值问题,提出一种将Runge-Kutta法与最小二乘支持向量机(LS-SVM)相结合的RK-LS-SVM方法求近似解。首先通过4阶Runge-Kutta法求出微分方程的数值解,然后将此数值解转化为LSSVM回归模型的约束条件,进而求解优化问题... 针对线性常微分方程的初值问题,提出一种将Runge-Kutta法与最小二乘支持向量机(LS-SVM)相结合的RK-LS-SVM方法求近似解。首先通过4阶Runge-Kutta法求出微分方程的数值解,然后将此数值解转化为LSSVM回归模型的约束条件,进而求解优化问题,所得闭式近似解连续可微,精度较高。数值算例验证了RK-LSSVM方法的有效性和可行性。 展开更多
关键词 RUNGE-KUTTA法 ls-svm 线性常微分方程 初值问题
在线阅读 下载PDF
基于LS-SVM的精确星光折射导航观测模型 被引量:1
2
作者 颜旭 王鼎杰 +2 位作者 张洪波 杨行 包为民 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第4期20-28,共9页
星光折射自主导航系统的精度受到星光折射观测模型的限制。针对星光折射计算简化与大气参数随高度变化对星光折射观测模型的影响,提出一种基于最小二乘支持向量机(LS-SVM)的精确星光折射导航观测模型建立方法。首先通过光线追迹高精度... 星光折射自主导航系统的精度受到星光折射观测模型的限制。针对星光折射计算简化与大气参数随高度变化对星光折射观测模型的影响,提出一种基于最小二乘支持向量机(LS-SVM)的精确星光折射导航观测模型建立方法。首先通过光线追迹高精度模拟星光折射的过程,未对折射角计算进行简化,考虑大气参数随高度的变化,得到折射真高度与折射角的非线性映射关系。然后利用LS-SVM机器学习算法精确拟合折射真高度与折射角的关系,建立关于折射视高度的高精度星光折射导航观测模型。仿真结果表明,建立的精确星光折射导航观测模型精度较高,平均绝对误差为0.986 m。将该观测模型应用到星光导航系统中,导航精度较高,定位误差平均为130.7 m,平均速度误差为0.1479 m/s,证明了建模方法的有效性,对于星光折射自主导航的高精度研究具有一定意义。 展开更多
关键词 星光折射导航 观测模型 光线追迹 ls-svm 机器学习
在线阅读 下载PDF
露天采矿爆破振动对民房破坏的LS-SVM预测模型 被引量:40
3
作者 邵良杉 白媛 +1 位作者 邱云飞 杜占玮 《煤炭学报》 EI CAS CSCD 北大核心 2012年第10期1637-1642,共6页
利用支持向量机学习原理,研究露天采矿爆破振动对民房破坏的预测问题。选取爆破振动幅值、主频率、主频率持续时间、灰缝强度、砖墙面积率、房屋高度、屋盖形式、圈梁构造柱、施工质量和场地条件作为露天采矿爆破振动对民房破坏的影响因... 利用支持向量机学习原理,研究露天采矿爆破振动对民房破坏的预测问题。选取爆破振动幅值、主频率、主频率持续时间、灰缝强度、砖墙面积率、房屋高度、屋盖形式、圈梁构造柱、施工质量和场地条件作为露天采矿爆破振动对民房破坏的影响因素,以工程实际检测数据为训练样本,建立露天采矿爆破振动对民房破坏的LS-SVM预测模型。利用32组爆破实验数据作为学习样本对支持向量机进行训练,建立相应的预测模型并通过回代估计方法进行回检,误判率为0,用另外12组现场实验数据作为检验样本进行测试,测试结果良好。结果表明,LS-SVM预测方法的误判率低,判别精度高,为露天采矿爆破振动对民房破坏预测提供了一种行之有效的新方法,可以在实际相关工程中展开使用。 展开更多
关键词 露天采矿 爆破振动 民房破坏 ls-svm
在线阅读 下载PDF
基于灰色关联分析的LS-SVM铁路货运量预测 被引量:49
4
作者 耿立艳 张天伟 赵鹏 《铁道学报》 EI CAS CSCD 北大核心 2012年第3期1-6,共6页
为提高对铁路货运量的预测精度及建模速度,在分析货运量影响因素基础上,提出基于灰色关联分析的LS-SVM铁路货运量预测方法。将货运量影响因素分为社会需求与铁路供给两方面因素,采用灰色关联分析法对两方面因素与货运量进行相关性分析,... 为提高对铁路货运量的预测精度及建模速度,在分析货运量影响因素基础上,提出基于灰色关联分析的LS-SVM铁路货运量预测方法。将货运量影响因素分为社会需求与铁路供给两方面因素,采用灰色关联分析法对两方面因素与货运量进行相关性分析,根据灰色关联度值,结合定性分析筛选LS-SVM输入变量,简化LS-SVM结构,再通过随机权重粒子群(SIWPSO)算法优化选择LS-SVM模型参数。通过对我国1980~2009年铁路货运量实例分析表明:该方法具有较快的收敛速度和较高的预测精度。 展开更多
关键词 铁路货运量 预测 灰色关联分析 最小二乘支持向量机
在线阅读 下载PDF
基于LS-SVM的红外光谱技术在奶粉脂肪含量无损检测中的应用 被引量:37
5
作者 吴迪 何勇 +1 位作者 冯水娟 鲍一丹 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2008年第3期180-184,共5页
脂肪是奶粉中重要的组成部分,实现对奶粉中脂肪含量的快速、无损检测十分重要,为此研究了400-6666 cm^-1范围的红外光谱技术对不同品种奶粉的脂肪含量的无损检测.采用最小二乘支持向量机(LS-SVM)对光谱透射率值和脂肪含量值进行建模.... 脂肪是奶粉中重要的组成部分,实现对奶粉中脂肪含量的快速、无损检测十分重要,为此研究了400-6666 cm^-1范围的红外光谱技术对不同品种奶粉的脂肪含量的无损检测.采用最小二乘支持向量机(LS-SVM)对光谱透射率值和脂肪含量值进行建模.模型在全红外波段范围对样本脂肪含量预测得到了较好的结果,绝对系数(R2p)达到0.9796,预测误差均方根(RMSEP)为0.8367.预测结果要优于BP人工神经网络(Back Propagation NeuralNetworks,BP-NN).说明红外光谱技术能够实现奶粉脂肪含量的无损检测,检测过程比化学检测方法简单快速,操作性强.文章同时还研究了分别基于中红外光谱范围和近红外光谱范围的建模.模型预测结果显示分别基于中红外光谱和近红外光谱区域的模型预测效果都比全波段建模略差.本研究为今后奶粉脂肪含量快速无损检测仪器的开发奠定了理论基础. 展开更多
关键词 近红外/中红外光谱 最小二乘支持向量机 无损检测
在线阅读 下载PDF
噪声参数最优ELMD与LS-SVM在轴承故障诊断中的应用与研究 被引量:22
6
作者 王建国 陈帅 张超 《振动与冲击》 EI CSCD 北大核心 2017年第5期72-78,86,共8页
针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承... 针对轴承振动信号的非平稳特征和现实中难以获得大量典型故障样本,提出基于噪声参数最优的总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)相结合的轴承故障诊断方法。首先对轴承振动信号进行噪声参数最优ELMD分解并得到一系列窄带乘积函数(Product Function,PF),然后计算各PF分量能量以构造能量特征向量,最后将高维能量特征向量作为最小二乘支持向量机的输入来识别轴承故障类型。通过对轴承故障振动信号分析,结果表明噪声参数最优ELMD方法能有效地抑制模态混叠,与LS-SVM结合可以准确地识别轴承的工作状态和故障类型。 展开更多
关键词 最优噪声参数 总体局部均值分解 能量特征向量 最小二乘支持向量机 故障诊断
在线阅读 下载PDF
江西省生猪价格波动的成因及其预警分析——基于灰色关联和LS-SVM模型 被引量:9
7
作者 付莲莲 翁贞林 张雅燕 《浙江农业学报》 CSCD 北大核心 2016年第9期1624-1630,共7页
以2000年1月至2015年5月的江西生猪价格数据为研究对象,利用Census-X12和HP滤波分解方法探索生猪价格波动的特征,结合逐步回归法和灰色关联分析识别影响生猪价格波动的显著因素,在此基础上,构建LS-SVM模型对生猪价格进行预测。结果表明... 以2000年1月至2015年5月的江西生猪价格数据为研究对象,利用Census-X12和HP滤波分解方法探索生猪价格波动的特征,结合逐步回归法和灰色关联分析识别影响生猪价格波动的显著因素,在此基础上,构建LS-SVM模型对生猪价格进行预测。结果表明,生猪价格波动具有明显的季节性,每年的1月份季节因子最大,6月份降至全年的最低点;2000年以来生猪价格共经历了7个波动周期,平均周期为25.3个月;随机性成分对生猪价格的贡献日益增大,玉米价格、仔猪价格、猪肉价格、生产者预期、牛肉价格和疫情对生猪价格的波动有显著作用,其中玉米价格和仔猪价格的影响较大;LS-SVM模型的预测值和真实值很接近,平均误差仅为1.37%,LS-SVM能较好地反映生猪价格及其影响因素之间的复杂的非线性关系。 展开更多
关键词 生猪价格 波动特征 灰色关联 ls-svm模型 预警
在线阅读 下载PDF
基于改进粒子群优化LS-SVM的卫星钟差预报研究 被引量:11
8
作者 刘继业 陈西宏 +1 位作者 刘强 孙际哲 《宇航学报》 EI CAS CSCD 北大核心 2013年第11期1509-1515,共7页
针对导航卫星短期钟差预报精度和稳定度不高的问题,提出了一种基于改进粒子群优化(PSO)最小二乘支持向量机(LS-SVM)的卫星钟差预报方法。通过引进自适应改变的惯性权重和学习因子来提高粒子群算法的寻优能力,并将其应用到LS-SVM的参数... 针对导航卫星短期钟差预报精度和稳定度不高的问题,提出了一种基于改进粒子群优化(PSO)最小二乘支持向量机(LS-SVM)的卫星钟差预报方法。通过引进自适应改变的惯性权重和学习因子来提高粒子群算法的寻优能力,并将其应用到LS-SVM的参数优化中,避免人为选择参数的盲目性,提高了LS-SVM的泛化能力和预报精度。选取国际GPS服务组织(IGS)产品中四颗典型卫星的钟差数据,分别采用LS-SVM模型、神经网络模型和灰色系统模型进行短期钟差预报,计算结果表明:LS-SVM模型的预报精度优于其它两种模型,为导航卫星短期高精度钟差预报提供了新的思路。 展开更多
关键词 粒子群优化 惯性权重 学习因子 最小二乘支持向量机 卫星钟差
在线阅读 下载PDF
基于粒子群优化算法的LS-SVM的GPS高程拟合 被引量:7
9
作者 高红 文鸿雁 +2 位作者 聂光裕 杨志 韩亚坤 《桂林理工大学学报》 CAS 北大核心 2016年第2期300-303,共4页
在GPS高程拟合中,传统拟合方法存在多数据、过学习、泛化能力弱等缺点,导致拟合结果精度欠缺,为此提出了LS-SVM拟合模型。利用粒子群算法对LS-SVM模型的初始参数进行了优化,通过实测数据对该模型进行了分析。实验结果表明,基于粒子群算... 在GPS高程拟合中,传统拟合方法存在多数据、过学习、泛化能力弱等缺点,导致拟合结果精度欠缺,为此提出了LS-SVM拟合模型。利用粒子群算法对LS-SVM模型的初始参数进行了优化,通过实测数据对该模型进行了分析。实验结果表明,基于粒子群算法优化的LS-SVM模型较传统单一的二次曲面拟合法、BP神经网络、LS-SVM等模型拟合精度高。 展开更多
关键词 粒子群优化算法 ls-svm BP神经网络 二次曲面拟合法 高程拟合
在线阅读 下载PDF
基于LS-SVM的管道二维漏磁缺陷重构 被引量:6
10
作者 纪凤珠 王长龙 +2 位作者 梁四洋 王建斌 王瑾 《西南石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期134-136,共3页
针对铁磁材料的无损评估中,漏磁信号描述缺陷的几何特征难点,提出了应用支持向量机对二维缺陷重构的新方法,支持向量机输入是漏磁信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系。网络学习采用最小二乘算法,... 针对铁磁材料的无损评估中,漏磁信号描述缺陷的几何特征难点,提出了应用支持向量机对二维缺陷重构的新方法,支持向量机输入是漏磁信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系。网络学习采用最小二乘算法,训练样本由实验数据与仿真数据组成,测试样本为人工裂纹缺陷。该方法实现了人工裂纹缺陷的二维轮廓的重构,并与径向基神经网络重构结果进行了比较。试验结果表明,该方法具有速度快、精度高和很好的泛化能力,为漏磁检测定量化提供了一种可行的方法。 展开更多
关键词 漏磁检测 最小二乘支持向量机 二维轮廓 缺陷 重构 管道
在线阅读 下载PDF
基于小波变换和LS-SVM的短期风速预测方法 被引量:10
11
作者 韩晓娟 曹慧 +2 位作者 李勇 肖运启 唐晓 《太阳能学报》 EI CAS CSCD 北大核心 2011年第10期1538-1542,共5页
针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上。结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的... 针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上。结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的各风速子序列分别采用LS-SVM进行训练和预测,最后将各预测结果进行叠加得到最终的风速预测值。与LS-SVM风速预测方法进行比较,采用该文提出的方法可明显提高短期风速预测的精度,并具有较强的适应性,具有一定的工程应用前景。最后通过具体实例验证了该模型的有效性。 展开更多
关键词 最小二乘支持向量机 风速预测 小波变换 预测模型
在线阅读 下载PDF
基于混合QPSO的LS-SVM参数优化及其应用 被引量:8
12
作者 朱红求 阳春华 +1 位作者 王觉 桂卫华 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期1000-1004,共5页
针对最小二乘支持向量机(LS-SVM)的参数寻优问题,提出一种基于混合量子粒子群算法(HQPSO)的LS-SVM参数选择方法,以提高LS-SVM模型的学习性能和泛化能力。该算法结合QPSO算法的全局优化能力和Powell的局部寻优能力,分别对粒子初始位置、... 针对最小二乘支持向量机(LS-SVM)的参数寻优问题,提出一种基于混合量子粒子群算法(HQPSO)的LS-SVM参数选择方法,以提高LS-SVM模型的学习性能和泛化能力。该算法结合QPSO算法的全局优化能力和Powell的局部寻优能力,分别对粒子初始位置、新局部最优位置以及全局最优位置进行Powell局部寻优,提高求解速度和解的精确性。利用测试函数对该建模方法进行仿真测试,与PSO LS-SVM模型进行比较,并利用湿法炼锌净化过程现场数据进行工业验证。研究结果表明:HQPSO LS-SVM模型具有较好的泛化性能,模型预测精度高,预测结果满足工艺生产的要求。 展开更多
关键词 最小二乘支持向量机 参数优化 HQPSO算法 净化过程
在线阅读 下载PDF
LS-SVM-GA算法在油田产量预测中的应用研究 被引量:8
13
作者 朱小梅 杨先凤 张群燕 《煤炭技术》 CAS 北大核心 2010年第11期197-198,共2页
油田产量预测是油田开发动态分析最重要的内容之一,也是油田开发优化决策的基础。在介绍最小二乘支持向量机(LS-SVM)及遗传算法(GA)的原理基础上,建立LS-SVM-GA模型,并用该模型对某气田天然气产量进行预测。通过二个性能指标将其与LS-SV... 油田产量预测是油田开发动态分析最重要的内容之一,也是油田开发优化决策的基础。在介绍最小二乘支持向量机(LS-SVM)及遗传算法(GA)的原理基础上,建立LS-SVM-GA模型,并用该模型对某气田天然气产量进行预测。通过二个性能指标将其与LS-SVM和BP神经网络模型进行对比,结果表明,在样本有限保证一定精度的情况下,LS-SVM-GA模型的预测精度较高,范化能力较强,能够利用该模型对气田天然气产量进行预测。 展开更多
关键词 最小二乘支持向量机(ls-svm) 遗传算法(GA) 天然气产量 预测
在线阅读 下载PDF
基于PSO优化LS-SVM的短期风速预测 被引量:16
14
作者 龚松建 袁宇浩 +1 位作者 王莉 张广明 《可再生能源》 CAS 北大核心 2011年第2期22-27,共6页
提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向... 提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向量机模型及BP神经网络模型具有较高的预测精度和运算速度。算例结果表明,经粒子群优化的最小二乘支持向量机算法是进行短期风速预测的有效方法。 展开更多
关键词 风速预测 粒子群优化 最小二乘支持向量机 神经网络
在线阅读 下载PDF
基于小波包分解的LS-SVM-ARIMA组合降水预测 被引量:19
15
作者 徐冬梅 张一多 王文川 《南水北调与水利科技(中英文)》 CAS 北大核心 2020年第6期71-77,共7页
针对降水量影响因素众多,是一种复杂的非平稳、非线性且存在噪声问题的时间序列的特点,提出一种基于小波包分解的LS-SVM与ARIMA组合模型的年降水量预测方法。利用小波包将降水序列分解成低频趋势序列和高频细节序列;应用LS-SVM模型预测... 针对降水量影响因素众多,是一种复杂的非平稳、非线性且存在噪声问题的时间序列的特点,提出一种基于小波包分解的LS-SVM与ARIMA组合模型的年降水量预测方法。利用小波包将降水序列分解成低频趋势序列和高频细节序列;应用LS-SVM模型预测低频趋势序列,ARIMA模型预测高频细节序列;将两个模型的预测结果叠加,得到年降水量的预测值。实例验证表明:小波包对时间序列的分解比小波分解更精细,组合模型预测能够全面的提取降水序列中所包含的信息,更好地反映年降水量随时间变化规律,提高了年降水量预测的精准度,为降水量预测提供一种新方法。 展开更多
关键词 降水预测 小波包分解 ls-svm模型 ARIMA模型 金沙县
在线阅读 下载PDF
基于RS与LS-SVM多分类法的故障诊断方法及其应用 被引量:10
16
作者 蒋少华 桂卫华 +1 位作者 阳春华 戴贤江 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期447-451,共5页
针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法。该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后... 针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法。该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后,输入到由多个最小二乘支持向量机构成的多故障分类器中进行故障识别和分类。研究结果表明:该方法具有较强的泛化能力,诊断准确率达到90%以上。 展开更多
关键词 粗糙集 最小二乘支持向量机 多类分类器 故障诊断
在线阅读 下载PDF
改进的蜂群LS-SVM故障预测 被引量:7
17
作者 王久崇 樊晓光 +1 位作者 盛晟 黄雷 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2013年第1期16-19,共4页
为了提高基于最小二乘支持向量机的故障预测精准度,提出了AFS-ABC算法,用于组合优化LS-SVM的规则化参数C和宽度参数σ。该算法将鱼群算法AFS简化模型中人工鱼的寻优更新方法引入到蜂群算法中,以互补优势、互克不足。通过100维Ackley函... 为了提高基于最小二乘支持向量机的故障预测精准度,提出了AFS-ABC算法,用于组合优化LS-SVM的规则化参数C和宽度参数σ。该算法将鱼群算法AFS简化模型中人工鱼的寻优更新方法引入到蜂群算法中,以互补优势、互克不足。通过100维Ackley函数验证了该算法在优化精度和搜索速度上较AFS算法与ABC算法的优越性,并以某航空电子系统电源模块记录电压数据序列的前40个作为LS-SVM模型的训练集,后15个作为测试集,利用MAT-LAB的LS-SVM工具箱进行状态预测仿真。结果表明,AFS-ABC算法较好地改善了LS-SVM的预测精度,同时解决了局部极值和寻优结果精度低的问题。 展开更多
关键词 故障预测 最小二乘支持向量机 蜂群算法 鱼群算法
在线阅读 下载PDF
基于空间加权的LS-SVM城市轨道交通车站客流量预测 被引量:18
18
作者 周家中 张殿业 《铁道学报》 EI CAS CSCD 北大核心 2014年第1期1-7,共7页
为提高城市轨道交通车站客流预测模型精度,简化模型数据需求规模,提出基于空间加权的LS-SVM城市轨道交通车站客流预测模型。基于交通网络距离重新划分车站的影响范围,提出分距离影响带的线型和指数型空间权重系数方程,结合空间权重系数... 为提高城市轨道交通车站客流预测模型精度,简化模型数据需求规模,提出基于空间加权的LS-SVM城市轨道交通车站客流预测模型。基于交通网络距离重新划分车站的影响范围,提出分距离影响带的线型和指数型空间权重系数方程,结合空间权重系数,输入区域特征变量和车站属性变量构建城市轨道交通车站客流LSSVM预测模型,运用动态改变惯性权重自适应粒子群优化算法(DCW-APSO)对模型参数进行优化选取。应用模型预测2011年成都市地铁1号线部分车站客流,并与其他模型进行比较,结果表明:模型明显提高客流预测精度,简化数据需求量,作为城市轨道交通客流预测的补充模型可以进一步提高系统的可靠性。 展开更多
关键词 城市轨道交通 车站客流 预测 空间加权 最小二乘支持向量机
在线阅读 下载PDF
基于ACO-LS-SVM的漏磁信号二维轮廓重构 被引量:2
19
作者 纪凤珠 孙世宇 +2 位作者 苑希超 王瑾 左宪章 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期165-169,215-216,共5页
漏磁检测技术被广泛应用于铁磁材料的无损评估中,由漏磁信号描述缺陷的几何特征一直是漏磁检测的难点。为此提出应用LS-SVM对缺陷轮廓进行重构的新方法,利用蚁群算法优化LS-SVM及核函数的参数,并采用剪枝算法改善LS-SVM的稀疏性。支持... 漏磁检测技术被广泛应用于铁磁材料的无损评估中,由漏磁信号描述缺陷的几何特征一直是漏磁检测的难点。为此提出应用LS-SVM对缺陷轮廓进行重构的新方法,利用蚁群算法优化LS-SVM及核函数的参数,并采用剪枝算法改善LS-SVM的稀疏性。支持向量机输入采用漏磁信号Bx、By分量的特征融合信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系。实现了人工裂纹缺陷二维轮廓的重构,并与BP神经网络、GA-LS-SVM和PSO-LS-SVM等3种方法重构效果进行了比较。结果表明:该方法速度快、精度高。 展开更多
关键词 漏磁检测 ls-svm ACO 特征融合 轮廓重构
在线阅读 下载PDF
基于LS-SVM和RBF的月降雨混沌时间序列预测 被引量:5
20
作者 计亚丽 贾克力 韩璞璞 《水电能源科学》 北大核心 2012年第9期13-16,214,共5页
以乌尔逊河为例,采用相空间重构理论计算实测月降雨的延迟时间、嵌入维数、G-P饱和关联维数和Laypunov指数,证明月降雨时间序列存在混沌现象。运用LS-SVM模型对乌尔逊河月降雨混沌时间序列进行预测,并利用交叉验证法求取LS-SVM模型两个... 以乌尔逊河为例,采用相空间重构理论计算实测月降雨的延迟时间、嵌入维数、G-P饱和关联维数和Laypunov指数,证明月降雨时间序列存在混沌现象。运用LS-SVM模型对乌尔逊河月降雨混沌时间序列进行预测,并利用交叉验证法求取LS-SVM模型两个重要参数的最佳组合,同时与RBF神经网络模型进行了对比分析。结果表明,在做混沌时间序列分析时LS-SVM模型的预测精度优于RBF神经网络模型。 展开更多
关键词 乌尔逊河 混沌理论 相空间重构 ls-svm RBF
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部