考虑到网页浏览器的渲染能力较弱,对Web3D渲染效果的真实性与美观性一直都是研究热点,尤其是基于物理的材质PBR(Physical based Rendering)在网页端的实现乃至动态可编辑都是难点。基于上述问题本文提出了基于PBR算法的Web端轻量级真实...考虑到网页浏览器的渲染能力较弱,对Web3D渲染效果的真实性与美观性一直都是研究热点,尤其是基于物理的材质PBR(Physical based Rendering)在网页端的实现乃至动态可编辑都是难点。基于上述问题本文提出了基于PBR算法的Web端轻量级真实感高品质实时渲染算法,将该算法涉及到的计算量较大的计算步骤简化,降低计算机渲染时的计算复杂度;同时提出了基于重用度的LPM(Lightweight Progressive Mesh)算法来简化模型文件、加快模型的加载速度。最后通过上述算法所编写的demo验证了算法的有效性。实验结果表明,该优化后的算法能够在Web端实现实时渲染可编辑的高品质轻量级3D模型。展开更多
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively...To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.展开更多
文摘考虑到网页浏览器的渲染能力较弱,对Web3D渲染效果的真实性与美观性一直都是研究热点,尤其是基于物理的材质PBR(Physical based Rendering)在网页端的实现乃至动态可编辑都是难点。基于上述问题本文提出了基于PBR算法的Web端轻量级真实感高品质实时渲染算法,将该算法涉及到的计算量较大的计算步骤简化,降低计算机渲染时的计算复杂度;同时提出了基于重用度的LPM(Lightweight Progressive Mesh)算法来简化模型文件、加快模型的加载速度。最后通过上述算法所编写的demo验证了算法的有效性。实验结果表明,该优化后的算法能够在Web端实现实时渲染可编辑的高品质轻量级3D模型。
文摘To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.