为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸...为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.展开更多
提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数...提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。展开更多
针对变步长LMS(Least Mean Square)自适应滤波算法不能同时满足较高收敛速度以及较低稳态误差的问题,根据反馈理论提出了一种新的变步长LMS自适应滤波算法,在原有算法模型中通过引入反馈控制函数建立了一种新的步长与误差的非线性函数模...针对变步长LMS(Least Mean Square)自适应滤波算法不能同时满足较高收敛速度以及较低稳态误差的问题,根据反馈理论提出了一种新的变步长LMS自适应滤波算法,在原有算法模型中通过引入反馈控制函数建立了一种新的步长与误差的非线性函数模型,使得当前的步长值跟当前误差与前一次误差比值的平方相关,通过MATLAB分析了新函数模型中关键参数对滤波性能的影响并确定了合理的关键参数.仿真结果表明:相比原有的算法,改进的新算法极大地提高了收敛速度,同时也降低了稳态误差.新算法性能良好,将其应用于超宽带无线电引信回波信号的滤波处理中,误差的抑制能力提高了4倍,滤波效果较佳.展开更多
文摘为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.
文摘提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。
文摘针对变步长LMS(Least Mean Square)自适应滤波算法不能同时满足较高收敛速度以及较低稳态误差的问题,根据反馈理论提出了一种新的变步长LMS自适应滤波算法,在原有算法模型中通过引入反馈控制函数建立了一种新的步长与误差的非线性函数模型,使得当前的步长值跟当前误差与前一次误差比值的平方相关,通过MATLAB分析了新函数模型中关键参数对滤波性能的影响并确定了合理的关键参数.仿真结果表明:相比原有的算法,改进的新算法极大地提高了收敛速度,同时也降低了稳态误差.新算法性能良好,将其应用于超宽带无线电引信回波信号的滤波处理中,误差的抑制能力提高了4倍,滤波效果较佳.