期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
从Blending Learning看教育技术理论的新发展 被引量:834
1
作者 何克抗 《国家教育行政学院学报》 2005年第9期37-48,79,共13页
所谓Blending Learning,就是要把传统学习方式的优势和E-Learning(即数字化或网络化学习)的优势结合起来;也就是说,既要发挥教师引导、启发、监控教学过程的主导作用,又要充分体现学生作为学习过程主体的主动性、积极性与创造性。这一... 所谓Blending Learning,就是要把传统学习方式的优势和E-Learning(即数字化或网络化学习)的优势结合起来;也就是说,既要发挥教师引导、启发、监控教学过程的主导作用,又要充分体现学生作为学习过程主体的主动性、积极性与创造性。这一新含义的提出和被广泛认同,表明国际教育技术界的教育思想观念正在经历又一场深刻的变革,也标志着教育技术理论的进一步发展,也必将对建构主义理论的反思、对信息技术教育应用认识的深化、对信息技术与课程整合理论的建构、对教学设计理论的发展等产生重大影响。 展开更多
关键词 Blending leaming BLENDED leaming建构主义信息技术与课程整合信 息技术教育应用 教学设计 教育技术理论 E-Learning 信息技术与课程整合 信息技术教育应用
在线阅读 下载PDF
Sparse Bayesian learning in ISAR tomography imaging
2
作者 苏伍各 王宏强 +2 位作者 邓彬 王瑞君 秦玉亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1790-1800,共11页
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a... Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms. 展开更多
关键词 inverse synthetic aperture radar (ISAR) TOMOGRAPHY computer aided tomography (CT) imaging sparse recover compress sensing (CS) sparse Bayesian leaming (SBL)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部