This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Sp...This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base ma...This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base matrix.RL-LDPC codes have been adopted in the technical specification of 5G new radio(5G-NR).We use the 5G NR LDPC code as the base matrix.The other is the edge coupling design.In this regard,we have designed a rate-compatible coupling algorithm,which can improve performance under multiple code rates.The constructed RL-RC-SC-LDPC code property requires a large coupling length L and thus we improved the reciprocal channel approximation(RCA)algorithm and proposed a sliding window RCA algorithm.It can provide lower com-plexity and latency than RCA algorithm.The code family shows improved thresholds close to the Shannon limit and finite-length performance compared with 5G NR LDPC codes for the additive white Gaussian noise(AWGN)channel.展开更多
Abstract: The layered decoding algorithm has been widely used in the implementation of Low Density Parity Check (LDPC) decoders, due to its high convergence speed. However, the pipeline operation of the layered dec...Abstract: The layered decoding algorithm has been widely used in the implementation of Low Density Parity Check (LDPC) decoders, due to its high convergence speed. However, the pipeline operation of the layered decoder may introduce memory access conflicts, which heavily deteriorates the decoder throughput. To essentially deal with the issue of memory access conflicts,展开更多
Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of ...Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.展开更多
In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is a...In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.展开更多
Decoding by alternating direction method of multipliers(ADMM) is a promising linear programming decoder for low-density parity-check(LDPC) codes. In this paper, we propose a two-step scheme to lower the error floor of...Decoding by alternating direction method of multipliers(ADMM) is a promising linear programming decoder for low-density parity-check(LDPC) codes. In this paper, we propose a two-step scheme to lower the error floor of LDPC codes with ADMM penalized decoder.For the undetected errors that cannot be avoided at the decoder side, we modify the code structure slightly to eliminate low-weight code words. For the detected errors induced by small error-prone structures, we propose a post-processing method for the ADMM penalized decoder. Simulation results show that the error floor can be reduced significantly over three illustrated LDPC codes by the proposed two-step scheme.展开更多
This paper presents an intelligent protograph construction algorithm.Protograph LDPC codes have shown excellent error correction performance and play an important role in wireless communications.Random search or manua...This paper presents an intelligent protograph construction algorithm.Protograph LDPC codes have shown excellent error correction performance and play an important role in wireless communications.Random search or manual construction are often used to obtain a good protograph,but the efficiency is not high enough and many experience and skills are needed.In this paper,a fast searching algorithm is proposed using the convolution neural network to predict the iterative decoding thresholds of protograph LDPC codes effectively.A special input data transformation rule is applied to provide stronger generalization ability.The proposed algorithm converges faster than other algorithms.The iterative decoding threshold of the constructed protograph surpasses greedy algorithm and random search by about 0.53 dB and 0.93 dB respectively under 100 times of density evolution.Simulation results show that quasi-cyclic LDPC(QC-LDPC)codes constructed from the proposed algorithm have competitive performance compared to other papers.展开更多
In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all ...In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.展开更多
The upcoming 6G wireless networks have to provide reliable communications in high-mobility scenarios at high carrier frequencies.However,high-mobility or high carrier frequencies will bring severe inter-carrier interf...The upcoming 6G wireless networks have to provide reliable communications in high-mobility scenarios at high carrier frequencies.However,high-mobility or high carrier frequencies will bring severe inter-carrier interference(ICI)to conventional orthogonal fre⁃quency-division multiplexing(OFDM)modulation.Orthogonal time frequency space(OTFS)modulation is a recently developing multi-carrier transmission scheme for wireless commu⁃nications in high-mobility environments.This paper evaluates the performance of coded OT⁃FS systems.In particular,we consider 5G low density parity check(LDPC)codes for OTFS systems based on 5G OFDM frame structures over high mobility channels.We show the per⁃formance of the OTFS systems with 5G LDPC codes when sum-product detection algorithm and iterative detection and decoding are employed.We also illustrate the effect of channel estimation error on the performance of the LDPC coded OTFS systems.展开更多
In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDP...In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliabilit...As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.展开更多
An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matri...An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matrix of the time-invariant convolutional LDPC code is derived by combining some special codewords of an(n,2,n−1)code.The achieved convolutional LDPC codes possess the characteristics of comparatively large girth and given syndrome former memory.The objective of our design is to enable the time-invariant convolutional LDPC codes the advantages of excellent error performance and fast encoding.In particular,the error performance of the proposed convolutional LDPC code with small constraint length is superior to most existing convolutional LDPC codes.展开更多
An enhanced scheme is proposed for high code rate low density parity check (LDPC) coded partial incremental redundancy (PIR) hybrid automatic repeat request (HARQ). It employs the unequal error protection (UEP...An enhanced scheme is proposed for high code rate low density parity check (LDPC) coded partial incremental redundancy (PIR) hybrid automatic repeat request (HARQ). It employs the unequal error protection (UEP) technique for incremental redundancy bits and uses the constellation rearrangement (CoRe) technique for information bits in retransmissions so as to reduce the reliability variances of all encoded bits after soft combining. Simulation results show that the proposed scheme applies to both regular LDPC and irregular LDPC cases and can efficiently improve frame error rate (FER) performance and throughput performance.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
文摘This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
文摘This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base matrix.RL-LDPC codes have been adopted in the technical specification of 5G new radio(5G-NR).We use the 5G NR LDPC code as the base matrix.The other is the edge coupling design.In this regard,we have designed a rate-compatible coupling algorithm,which can improve performance under multiple code rates.The constructed RL-RC-SC-LDPC code property requires a large coupling length L and thus we improved the reciprocal channel approximation(RCA)algorithm and proposed a sliding window RCA algorithm.It can provide lower com-plexity and latency than RCA algorithm.The code family shows improved thresholds close to the Shannon limit and finite-length performance compared with 5G NR LDPC codes for the additive white Gaussian noise(AWGN)channel.
基金the National Natural Science Foundation of China,the National Key Basic Research Program of China,The authors would like to thank all project partners for their valuable contributions and feedbacks
文摘Abstract: The layered decoding algorithm has been widely used in the implementation of Low Density Parity Check (LDPC) decoders, due to its high convergence speed. However, the pipeline operation of the layered decoder may introduce memory access conflicts, which heavily deteriorates the decoder throughput. To essentially deal with the issue of memory access conflicts,
基金supported by the Fundamental Research Funds for the Central Universities
文摘Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.
基金supported in part by the National Natural Science Foundation of China under Grant 61201187by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110+2 种基金by the Tsinghua University Initiative Scientific Research Program under Grant 20121088074by the Foundation of Zhejiang Educational Committee under Grant Y201121579by the Visiting Scholar Professional Development Project of Zhejiang Educational Committee under Grant FX2014052
文摘In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.
基金supported in part by National Nature Science Foundation of China under Grant No.61471286,No.61271004the Fundamental Research Funds for the Central Universitiesthe open research fund of Key Laboratory of Information Coding and Transmission,Southwest Jiaotong University(No.2010-03)
文摘Decoding by alternating direction method of multipliers(ADMM) is a promising linear programming decoder for low-density parity-check(LDPC) codes. In this paper, we propose a two-step scheme to lower the error floor of LDPC codes with ADMM penalized decoder.For the undetected errors that cannot be avoided at the decoder side, we modify the code structure slightly to eliminate low-weight code words. For the detected errors induced by small error-prone structures, we propose a post-processing method for the ADMM penalized decoder. Simulation results show that the error floor can be reduced significantly over three illustrated LDPC codes by the proposed two-step scheme.
基金supported in part with the Project on the Industry Key Technologies of Jiangsu Province(No.BE2017153)the Industry-University-Research Fund of ZTE Corporation.
文摘This paper presents an intelligent protograph construction algorithm.Protograph LDPC codes have shown excellent error correction performance and play an important role in wireless communications.Random search or manual construction are often used to obtain a good protograph,but the efficiency is not high enough and many experience and skills are needed.In this paper,a fast searching algorithm is proposed using the convolution neural network to predict the iterative decoding thresholds of protograph LDPC codes effectively.A special input data transformation rule is applied to provide stronger generalization ability.The proposed algorithm converges faster than other algorithms.The iterative decoding threshold of the constructed protograph surpasses greedy algorithm and random search by about 0.53 dB and 0.93 dB respectively under 100 times of density evolution.Simulation results show that quasi-cyclic LDPC(QC-LDPC)codes constructed from the proposed algorithm have competitive performance compared to other papers.
基金supported in part by National Basic Research Program of China under Grant No.2012CB316100National Natural Science Foundation of China under Grants 61372074 and 91438101+1 种基金Joint Funds of the National Natural Science Foundation of China under Grant No.U1504601Science and Technology on Communication Networks Laboratory under Grant KX132600032
文摘In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.
基金supported by National Key R&D Program of Chi⁃na(No.2020YFB1807802)the National Science Fund for Distinguished Young Scholars(No.61901453)Jiangsu Provincial Key Research and Development Program(No.BE2021013-2)。
文摘The upcoming 6G wireless networks have to provide reliable communications in high-mobility scenarios at high carrier frequencies.However,high-mobility or high carrier frequencies will bring severe inter-carrier interference(ICI)to conventional orthogonal fre⁃quency-division multiplexing(OFDM)modulation.Orthogonal time frequency space(OTFS)modulation is a recently developing multi-carrier transmission scheme for wireless commu⁃nications in high-mobility environments.This paper evaluates the performance of coded OT⁃FS systems.In particular,we consider 5G low density parity check(LDPC)codes for OTFS systems based on 5G OFDM frame structures over high mobility channels.We show the per⁃formance of the OTFS systems with 5G LDPC codes when sum-product detection algorithm and iterative detection and decoding are employed.We also illustrate the effect of channel estimation error on the performance of the LDPC coded OTFS systems.
基金supported in part by National Natural Science Foundation of China under Grants 61372074,91438101,61103143,U1504601,and U1404622Key Scientific and Technological Project of Henan under Grants 162102310589 and 172102310124
文摘In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 61931015the Peng Cheng Laboratory under Grant PCL2021A10+1 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(No.JSGG20201103095805015)sponsored by Tsinghua University-Yunnan Mobile Digital TV Company Ltd.,Joint Research Center(JCICBN)。
文摘As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.
基金the National Natural Science Foundation of China(No.61401164)。
文摘An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matrix of the time-invariant convolutional LDPC code is derived by combining some special codewords of an(n,2,n−1)code.The achieved convolutional LDPC codes possess the characteristics of comparatively large girth and given syndrome former memory.The objective of our design is to enable the time-invariant convolutional LDPC codes the advantages of excellent error performance and fast encoding.In particular,the error performance of the proposed convolutional LDPC code with small constraint length is superior to most existing convolutional LDPC codes.
基金Sponsored by the National Natural Science Foundation of China(60502026)
文摘An enhanced scheme is proposed for high code rate low density parity check (LDPC) coded partial incremental redundancy (PIR) hybrid automatic repeat request (HARQ). It employs the unequal error protection (UEP) technique for incremental redundancy bits and uses the constellation rearrangement (CoRe) technique for information bits in retransmissions so as to reduce the reliability variances of all encoded bits after soft combining. Simulation results show that the proposed scheme applies to both regular LDPC and irregular LDPC cases and can efficiently improve frame error rate (FER) performance and throughput performance.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.