当输入电压或者负载电流变化时低压差线性稳压器(LDO)系统稳定性是其研究热点和设计难点。针对这一问题,设计了一款加入动态补偿电路的快速响应LDO,这种新颖的LDO结构能有效改善在不同负载电流或者输入电压下系统的稳定性能。其适用...当输入电压或者负载电流变化时低压差线性稳压器(LDO)系统稳定性是其研究热点和设计难点。针对这一问题,设计了一款加入动态补偿电路的快速响应LDO,这种新颖的LDO结构能有效改善在不同负载电流或者输入电压下系统的稳定性能。其适用电压范围为4.5~16.0 V,输出电压5.0 V,具有低功耗、带宽宽等特性。使用Hspice软件对设计的LDO进行了仿真验证,在典型工艺角下,负载电流经100 m A/μs突变时,输出电压突变量最大为105 m V,响应恢复时间平均约2.1μs。环路特性仿真结果表明,该LDO带宽为4.9 MHz,3 d B带宽为3.5MHz,相位裕度为约76°,且片内补偿电容仅0.3 p F。展开更多
针对自适应拥塞控制系统操作特性所出现的低速率拒绝服务攻击(LDoS,Low-rate Denial of Service attacks)是近年来的一类新型DoS攻击。与传统洪范式DoS攻击相比,LDoS具有攻击效率更高、检测难度更大等特点。在对常用攻击模拟分析平台NS...针对自适应拥塞控制系统操作特性所出现的低速率拒绝服务攻击(LDoS,Low-rate Denial of Service attacks)是近年来的一类新型DoS攻击。与传统洪范式DoS攻击相比,LDoS具有攻击效率更高、检测难度更大等特点。在对常用攻击模拟分析平台NS2进行缺陷分析的基础上,提出了一种基于有色Petri网(CPN)的LDoS攻击系统建模方法,应用仿真工具CPN Tools实现了对目标系统行为及LDoS攻击效果的仿真,并在此基础上提出了一种基于自适应资源投放的系统防范方案,仿真结果表明此方案能够有效降低LDoS攻击对目标系统服务质量的影响。展开更多
提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出...提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出小基准电流以减少静态功耗,而在工作模式提供大的基准电流以增加闭环带宽和功率管栅端的摆率。设计的LDO应用于采用70 nm闪存工艺制造的、工作电压为2~3.6 V和存储容量为64 M的闪存中。测试结果表明,该LDO输出的调制电压为1.8 V,最大输出电流为40 m A,在没有负载的条件下仅消耗8.5μA的静态电流,在满载电流变化时,用于闪存时仅有20 ns响应时间且最大输出电压变化仅为72 m V,满足高速闪存的要求。展开更多
文摘当输入电压或者负载电流变化时低压差线性稳压器(LDO)系统稳定性是其研究热点和设计难点。针对这一问题,设计了一款加入动态补偿电路的快速响应LDO,这种新颖的LDO结构能有效改善在不同负载电流或者输入电压下系统的稳定性能。其适用电压范围为4.5~16.0 V,输出电压5.0 V,具有低功耗、带宽宽等特性。使用Hspice软件对设计的LDO进行了仿真验证,在典型工艺角下,负载电流经100 m A/μs突变时,输出电压突变量最大为105 m V,响应恢复时间平均约2.1μs。环路特性仿真结果表明,该LDO带宽为4.9 MHz,3 d B带宽为3.5MHz,相位裕度为约76°,且片内补偿电容仅0.3 p F。
文摘针对自适应拥塞控制系统操作特性所出现的低速率拒绝服务攻击(LDoS,Low-rate Denial of Service attacks)是近年来的一类新型DoS攻击。与传统洪范式DoS攻击相比,LDoS具有攻击效率更高、检测难度更大等特点。在对常用攻击模拟分析平台NS2进行缺陷分析的基础上,提出了一种基于有色Petri网(CPN)的LDoS攻击系统建模方法,应用仿真工具CPN Tools实现了对目标系统行为及LDoS攻击效果的仿真,并在此基础上提出了一种基于自适应资源投放的系统防范方案,仿真结果表明此方案能够有效降低LDoS攻击对目标系统服务质量的影响。
文摘提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出小基准电流以减少静态功耗,而在工作模式提供大的基准电流以增加闭环带宽和功率管栅端的摆率。设计的LDO应用于采用70 nm闪存工艺制造的、工作电压为2~3.6 V和存储容量为64 M的闪存中。测试结果表明,该LDO输出的调制电压为1.8 V,最大输出电流为40 m A,在没有负载的条件下仅消耗8.5μA的静态电流,在满载电流变化时,用于闪存时仅有20 ns响应时间且最大输出电压变化仅为72 m V,满足高速闪存的要求。