输入电压和负载宽范围变化时,变频控制LCC谐振变换器的开关频率变化范围宽,而移相控制LCC谐振变换器难以实现宽范围零电压关断(zero voltage switching,ZVS)。为了在较窄开关频率范围内实现LCC谐振变换器的宽范围软开关,该文提出一种...输入电压和负载宽范围变化时,变频控制LCC谐振变换器的开关频率变化范围宽,而移相控制LCC谐振变换器难以实现宽范围零电压关断(zero voltage switching,ZVS)。为了在较窄开关频率范围内实现LCC谐振变换器的宽范围软开关,该文提出一种脉宽-脉频调制(pulse width modulation-pulse frequency modulation,PWM-PFM)混合控制LCC变换器。通过同时调整LCC变换器原边开关管的导通角与开关频率,在宽输入电压和宽负载变化范围内,提出的PWM-PFM混合控制LCC变换器能在稳压输出的同时保持变换器ZVS软开关工作。此外,PWM-PFM混合控制LCC谐振变换器的开关频率范围较窄,简化了变换器磁性元件的设计。以工作在电容电压连续模式(continuous capacitor voltage mode,CCVM)的LCC谐振变换器为例,利用基波近似法,分析PWM-PFM混合控制LCC谐振变换器的工作原理和控制特性,对谐振元件和控制参数进行设计。最后,通过一台100-200V输入、48V/500W输出的实验样机验证了理论分析的正确性。展开更多
为解决因输出整流桥的存在而导致的LCC串并联谐振变换器谐振参数分析与计算复杂化这一问题,提出了利用整流补偿基波近似法对静电除尘用的具有电容型滤波器的LCC串并联谐振变换器负载进行线性化等效,将谐振变换器的并联电容、整流桥和负...为解决因输出整流桥的存在而导致的LCC串并联谐振变换器谐振参数分析与计算复杂化这一问题,提出了利用整流补偿基波近似法对静电除尘用的具有电容型滤波器的LCC串并联谐振变换器负载进行线性化等效,将谐振变换器的并联电容、整流桥和负载等效为线性的RC串联电路,降低了变换器特性分析和参数计算的难度;在此基础上以18 k V/100 m A的高频静电除尘高压直流电源为例,给出了具有电容型滤波器的LCC谐振变换器参数的设计方法和设计参数,并用PSIM仿真软件进行了验证。研究结果表明:通过该方法设计出的谐振电路参数与实际的LCC谐振电路误差较小,针对高频高压静电除尘器电源的非线性负载,可以较为简便且准确地获得线性化等效模型;该方法对LCC串并联谐振变换器的参数设计和特性分析具有指导意义。展开更多
文摘输入电压和负载宽范围变化时,变频控制LCC谐振变换器的开关频率变化范围宽,而移相控制LCC谐振变换器难以实现宽范围零电压关断(zero voltage switching,ZVS)。为了在较窄开关频率范围内实现LCC谐振变换器的宽范围软开关,该文提出一种脉宽-脉频调制(pulse width modulation-pulse frequency modulation,PWM-PFM)混合控制LCC变换器。通过同时调整LCC变换器原边开关管的导通角与开关频率,在宽输入电压和宽负载变化范围内,提出的PWM-PFM混合控制LCC变换器能在稳压输出的同时保持变换器ZVS软开关工作。此外,PWM-PFM混合控制LCC谐振变换器的开关频率范围较窄,简化了变换器磁性元件的设计。以工作在电容电压连续模式(continuous capacitor voltage mode,CCVM)的LCC谐振变换器为例,利用基波近似法,分析PWM-PFM混合控制LCC谐振变换器的工作原理和控制特性,对谐振元件和控制参数进行设计。最后,通过一台100-200V输入、48V/500W输出的实验样机验证了理论分析的正确性。
文摘为解决因输出整流桥的存在而导致的LCC串并联谐振变换器谐振参数分析与计算复杂化这一问题,提出了利用整流补偿基波近似法对静电除尘用的具有电容型滤波器的LCC串并联谐振变换器负载进行线性化等效,将谐振变换器的并联电容、整流桥和负载等效为线性的RC串联电路,降低了变换器特性分析和参数计算的难度;在此基础上以18 k V/100 m A的高频静电除尘高压直流电源为例,给出了具有电容型滤波器的LCC谐振变换器参数的设计方法和设计参数,并用PSIM仿真软件进行了验证。研究结果表明:通过该方法设计出的谐振电路参数与实际的LCC谐振电路误差较小,针对高频高压静电除尘器电源的非线性负载,可以较为简便且准确地获得线性化等效模型;该方法对LCC串并联谐振变换器的参数设计和特性分析具有指导意义。