As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decompos...As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.展开更多
A class of latent ancestral graph for modelling the dependence structure of structural vector autoregressive (VAR) model affected by latent variables is proposed. The graphs are mixed graphs with possibly two kind o...A class of latent ancestral graph for modelling the dependence structure of structural vector autoregressive (VAR) model affected by latent variables is proposed. The graphs are mixed graphs with possibly two kind of edges, namely directed and bidirected edges. The vertex set denotes random variables at dif- ferent times. In Gaussian case, the latent ancestral graph leads to a simple parameterization model. A modified iterative conditional fitting algorithm is presented to obtain maximum likelihood esti- mation of the parameters. Furthermore, a log-likelihood criterion is used to select the most appropriate models. Simulations are performed using illustrative examples and results are provided to demonstrate the validity of the methods.展开更多
基金supported by the National Natural Science Foundation of China(62273354,61673387,61833016).
文摘As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.
基金supported in part by the National Natural Science Foundation of China(60375003)the Aeronautics and Astronautics Basal Science Foundation of China(03I53059)
文摘A class of latent ancestral graph for modelling the dependence structure of structural vector autoregressive (VAR) model affected by latent variables is proposed. The graphs are mixed graphs with possibly two kind of edges, namely directed and bidirected edges. The vertex set denotes random variables at dif- ferent times. In Gaussian case, the latent ancestral graph leads to a simple parameterization model. A modified iterative conditional fitting algorithm is presented to obtain maximum likelihood esti- mation of the parameters. Furthermore, a log-likelihood criterion is used to select the most appropriate models. Simulations are performed using illustrative examples and results are provided to demonstrate the validity of the methods.