期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Reinforcement learning based parameter optimization of active disturbance rejection control for autonomous underwater vehicle 被引量:3
1
作者 SONG Wanping CHEN Zengqiang +1 位作者 SUN Mingwei SUN Qinglin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期170-179,共10页
This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater ve... This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified. 展开更多
关键词 autonomous underwater vehicle(AUV) reinforcement learning(RL) Q-LEARNING linear active disturbance rejection control(ladrc) motion decoupling parameter optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部