期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于L2范数最小化联合模型的目标跟踪算法 被引量:5
1
作者 王蒙 吴毅 +1 位作者 邓健康 刘青山 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第3期559-566,共8页
为了解决稀疏表示的跟踪算法的计算代价比较大,且目标的表观由于多种原因会发生变化的问题,提出了一种在贝叶斯推理框架下,建立结合基于全局模板的判别式模型和基于局部描述子的生成式模型的联合模型,通过L2范数最小化进行求解的目标跟... 为了解决稀疏表示的跟踪算法的计算代价比较大,且目标的表观由于多种原因会发生变化的问题,提出了一种在贝叶斯推理框架下,建立结合基于全局模板的判别式模型和基于局部描述子的生成式模型的联合模型,通过L2范数最小化进行求解的目标跟踪方法.在跟踪过程中,适时地更新判别式模型中的正负模板和生成式模型中模板的系数向量,使模板具有很强的适应性和判别性.实验结果表明,与其他典型的算法相比,该算法对于光照变化、尺度变化、遮挡、旋转等情况具有较强的鲁棒性. 展开更多
关键词 目标跟踪 l2范数最小化 判别式模型 生成式模型 子空间
在线阅读 下载PDF
融合L2范数最小化和压缩Haar-like特征匹配的快速目标跟踪 被引量:3
2
作者 吴正平 杨杰 +1 位作者 崔晓梦 张庆年 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2803-2810,共8页
在贝叶斯推理框架下,基于PCA子空间和L2范数最小化的目标跟踪算法能较好地处理视频场景中多种复杂的外观变化,但在目标出现旋转或姿态变化时易发生跟踪漂移现象。针对这一问题,该文提出一种融合L2范数最小化和压缩Haar-like特征匹配的... 在贝叶斯推理框架下,基于PCA子空间和L2范数最小化的目标跟踪算法能较好地处理视频场景中多种复杂的外观变化,但在目标出现旋转或姿态变化时易发生跟踪漂移现象。针对这一问题,该文提出一种融合L2范数最小化和压缩Haar-like特征匹配的快速视觉跟踪方法。该方法通过去除规模庞大的方块模板集和简化观测似然度函数降低计算的复杂度;而压缩Haar-like特征匹配技术则增强了算法对目标姿态变化及旋转的鲁棒性。实验结果表明:与目前流行的跟踪方法相比,该方法对严重遮挡、光照突变、快速运动、姿态变化和旋转等干扰均具有较强的鲁棒性,且在多个测试视频上可以达到29帧/s的速度,能满足快速视频跟踪要求。 展开更多
关键词 目标跟踪 PCA子空间 l2范数最小化 压缩Haar-like特征 观测似然度
在线阅读 下载PDF
基于ML和L2范数的视频目标跟踪算法 被引量:10
3
作者 姜明新 王洪玉 +1 位作者 王洁 王彪 《电子学报》 EI CAS CSCD 北大核心 2013年第11期2307-2313,共7页
目标跟踪是计算机视觉领域的一个具有挑战性的问题,本文提出了一种基于ML(最大似然)估计和L2范数的视频目标跟踪算法.建立基于稀疏限制的ML模型,给样本中的异常像素分配较小的权值,减少异常像素对跟踪算法的影响.利用L2范数最小化进行... 目标跟踪是计算机视觉领域的一个具有挑战性的问题,本文提出了一种基于ML(最大似然)估计和L2范数的视频目标跟踪算法.建立基于稀疏限制的ML模型,给样本中的异常像素分配较小的权值,减少异常像素对跟踪算法的影响.利用L2范数最小化进行稀疏编码求解.采用贝叶斯估计得出目标跟踪结果.与其他典型算法相比,本算法降低了计算的复杂度,对遮挡,旋转,尺度变化,光照变化等异常变化具有较强的鲁棒性. 展开更多
关键词 稀疏限制 最大似然 l2范数最小化 贝叶斯MAP估计
在线阅读 下载PDF
一种联合阴影和目标区域图像的SAR目标识别方法 被引量:15
4
作者 丁军 刘宏伟 +3 位作者 王英华 王正珏 齐会娇 时荔蕙 《电子与信息学报》 EI CSCD 北大核心 2015年第3期594-600,共7页
地面目标的SAR图像中除了包含目标散射回波形成的区域,还包括由目标遮挡地面形成的阴影区域。但是由于这两种区域中的图像特性不相同,所以传统的SAR图像自动目标识别主要利用目标区域信息进行目标识别,或者单独使用阴影区域进行识别。... 地面目标的SAR图像中除了包含目标散射回波形成的区域,还包括由目标遮挡地面形成的阴影区域。但是由于这两种区域中的图像特性不相同,所以传统的SAR图像自动目标识别主要利用目标区域信息进行目标识别,或者单独使用阴影区域进行识别。该文提出一种阴影区域与目标区域图像联合的稀疏表示模型。通过使用l1\l2范数最小化方法求解该模型得到联合的稀疏表示,然后根据联合重构误差最小准则进行SAR图像目标识别。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,通过联合稀疏表示模型可以有效地将目标区域与阴影区域信息进行融合,相对于采用单独区域图像的稀疏表示识别方法性能更好。 展开更多
关键词 目标识别 联合稀疏表示 l1/l2范数最小化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部