A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
This paper presents a new method for image separation through employing a combined dictionary consisting of wavelets and complex shearlets. Because the combined dictionary sparsely represents points and curvilinear si...This paper presents a new method for image separation through employing a combined dictionary consisting of wavelets and complex shearlets. Because the combined dictionary sparsely represents points and curvilinear singularities respectively, the image can be decomposed into pointlike and curvelike parts as accurate as possible. The proposed method based on the geo- metric separation theory introduced by Donoho in 2005 shows that accurate geometric separation of the morphologically distinct fea- tures of points and curves can be achieved by l1 minimization. The experimental results show that the proposed method can not only be effective but also greatly reduce the computing time.展开更多
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金supported by the Aviation Science Foundation(201120M5007)the Natural Science Foundation of Beijing(4102050)
文摘This paper presents a new method for image separation through employing a combined dictionary consisting of wavelets and complex shearlets. Because the combined dictionary sparsely represents points and curvilinear singularities respectively, the image can be decomposed into pointlike and curvelike parts as accurate as possible. The proposed method based on the geo- metric separation theory introduced by Donoho in 2005 shows that accurate geometric separation of the morphologically distinct fea- tures of points and curves can be achieved by l1 minimization. The experimental results show that the proposed method can not only be effective but also greatly reduce the computing time.