期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于L1惩罚Logit模型的P2P网络借贷信用违约识别与预测 被引量:11
1
作者 阮素梅 周泽林 《财贸研究》 CSSCI 北大核心 2018年第2期54-63,共10页
利用L1惩罚Logit模型,实证检验P2P网贷信用违约的关键影响因素;并利用混淆矩阵与ROC曲线等分类评价方法,检验模型的违约预测效果。研究发现:L1惩罚Logit模型具有很好的变量选择功能,可以有效地识别影响信用违约的关键因素,降低管理者的... 利用L1惩罚Logit模型,实证检验P2P网贷信用违约的关键影响因素;并利用混淆矩阵与ROC曲线等分类评价方法,检验模型的违约预测效果。研究发现:L1惩罚Logit模型具有很好的变量选择功能,可以有效地识别影响信用违约的关键因素,降低管理者的监管成本;L1惩罚Logit模型能够获得比普通Logit模型、支持向量机等更好的预测效果,既能够从总体上实现对信用违约状态的准确预测,又能够细致分析关键影响因素对违约概率造成的影响,有助于预测和控制信用风险的发生。 展开更多
关键词 P2P网络借贷 信用风险 l1惩罚logit模型
在线阅读 下载PDF
带状结构的高斯图模型嵌套惩罚估计 被引量:1
2
作者 李凡群 张新生 《统计与决策》 CSSCI 北大核心 2018年第23期66-69,共4页
高斯图模型的精确矩阵的诸元素可以利用系列线性回归模型进行解释。在具有带状结构的高斯图模型场合下,文章对诸线性回归系数施加嵌套的l1惩罚,得到精确矩阵的改进的嵌套Lasso估计。通过局部平方近似及牛顿迭代算法,能很方便得到估计结... 高斯图模型的精确矩阵的诸元素可以利用系列线性回归模型进行解释。在具有带状结构的高斯图模型场合下,文章对诸线性回归系数施加嵌套的l1惩罚,得到精确矩阵的改进的嵌套Lasso估计。通过局部平方近似及牛顿迭代算法,能很方便得到估计结果。数值模拟结果表明精确矩阵的嵌套Lasso估计提高了估计速度和估计精度。 展开更多
关键词 高维图模型 协方差矩阵 精确矩阵 嵌套l1惩罚 lasso估计
在线阅读 下载PDF
基于惩罚高斯混合模型的微阵列基因表达数据分析
3
作者 石玉 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期1-7,共7页
随着现代生物技术的发展,基于基因表达数据的肿瘤分型诊断已成为DNA微阵列的重要应用领域。提出一种基于基因表达数据的肿瘤分型诊断新方法,并在理论上给出模型解释。该方法通过对高斯混合模型加上一个L1惩罚实现了肿瘤分类和信息基因... 随着现代生物技术的发展,基于基因表达数据的肿瘤分型诊断已成为DNA微阵列的重要应用领域。提出一种基于基因表达数据的肿瘤分型诊断新方法,并在理论上给出模型解释。该方法通过对高斯混合模型加上一个L1惩罚实现了肿瘤分类和信息基因选择的有机结合,从而用较少的变量达到更高的识别率。实验结果显示,无论是在模拟数据中还是五个微阵列数据集中,提出的方法都是高效稳定的。 展开更多
关键词 微阵列数据 肿瘤诊断 基因选择 混合高斯模型 l1惩罚
在线阅读 下载PDF
图模型在彩色纹理分类中的应用 被引量:3
4
作者 杨关 张向东 +2 位作者 冯国灿 邹小林 刘志勇 《计算机科学》 CSCD 北大核心 2011年第10期273-277,共5页
纹理分析中往往将彩色图像转换为灰度图以降低计算复杂度,这样就忽略了颜色信息。而利用主成分分析的方法来降维彩色纹理,则可以尽可能地保留颜色和纹理信息。高斯图模型(Gaussian Graphical Models,GGM)可以很好地描述有交互作用的高... 纹理分析中往往将彩色图像转换为灰度图以降低计算复杂度,这样就忽略了颜色信息。而利用主成分分析的方法来降维彩色纹理,则可以尽可能地保留颜色和纹理信息。高斯图模型(Gaussian Graphical Models,GGM)可以很好地描述有交互作用的高维数据,因此可用来建立图像纹理模型。根据局部马尔可夫性和高斯变量的条件回归之间的关系,可将复杂的模型选择转变为较简单的变量选择。通过惩罚正则化方法,其邻域选择和参数估计可同步进行,然后提取纹理特征进行彩色纹理分类,实验显示其具有很好的效果。因此,结合主成分分析和高斯图模型来构建彩色纹理模型有很好的发展前景。 展开更多
关键词 高斯图模型 变量选择 l1-惩罚正则化 彩色纹理分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部