期刊文献+
共找到2,084篇文章
< 1 2 105 >
每页显示 20 50 100
基于L-M神经网络优化算法的池塘水色判别系统的初步建立 被引量:3
1
作者 王海英 曹晶 +2 位作者 谢骏 王广军 胡朝莹 《渔业现代化》 北大核心 2010年第5期19-21,37,共4页
为了将水产养殖水色判别传统技术经验转化为可以量化的数字技术,采用基于L-M神经网络优化算法和计算机图像处理技术的方法,建立了一个水色判别的水产养殖专家系统。通过实例预测,该系统判别误差率<1%。该系统训练后的神经网络模型,... 为了将水产养殖水色判别传统技术经验转化为可以量化的数字技术,采用基于L-M神经网络优化算法和计算机图像处理技术的方法,建立了一个水色判别的水产养殖专家系统。通过实例预测,该系统判别误差率<1%。该系统训练后的神经网络模型,能实现对养殖池塘水质的预测。系统的开发和使用对实现水产健康养殖、智能控制和计算机管理具有一定实用价值. 展开更多
关键词 水色图像 图像特征值 l-m神经网络优化算法 水质预测
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
2
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-BP神经网络 遗传算法
在线阅读 下载PDF
基于人工神经网络耦联遗传算法优化肉葡萄球菌高密度培养基配方
3
作者 王仪 祝超智 +4 位作者 白雪原 郑飏衣 张新军 仝林 赵改名 《肉类研究》 北大核心 2025年第5期1-9,共9页
为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algo... 为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algorithm,ANN-GA)模型。结果表明,氮源是影响肉葡萄球菌活菌数的最重要因素。与响应面优化模型相比,ANN-GA模型能够更精确地预测培养基配方对肉葡萄球菌活菌数的影响,误差小且优化效果更好,最佳培养基配方为葡萄糖3.21 g/L、大豆蛋白胨20.17 g/L、牛肉浸粉20.17 g/L、磷酸氢二钾5.63 g/L、氯化钠5.0 g/L、七水硫酸镁0.2 g/L。在5 L发酵罐水平小试最大活菌数可达1.67×10^(10)CFU/mL。 展开更多
关键词 肉葡萄球菌 高密度培养基 响应面法 人工神经网络 遗传算法 优化
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
4
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于少数类合成的过采样算法和贝叶斯优化神经网络的结构可靠性分析方法
5
作者 葛福林 吴宗辉 何建 《船舶力学》 北大核心 2025年第5期767-775,共9页
为提高滑油冷却器抗冲击可靠性的计算精度和分析效率,本文提出一种基于少数类合成的过采样(SMOTE)算法和贝叶斯优化(BO)神经网络的结构可靠性分析方法。该方法首先采用均匀设计(UD)方法和少数类合成的过采样算法提高样本点的利用效率,... 为提高滑油冷却器抗冲击可靠性的计算精度和分析效率,本文提出一种基于少数类合成的过采样(SMOTE)算法和贝叶斯优化(BO)神经网络的结构可靠性分析方法。该方法首先采用均匀设计(UD)方法和少数类合成的过采样算法提高样本点的利用效率,其次使用贝叶斯优化算法优化BP神经网络超参数、初始权值和初始偏置,以提高模型的拟合精度和泛化能力,最后利用优化后的代理模型结合Monte Carlo法计算结构可靠度。研究表明:相较于传统的代理模型法,本文的方法具有计算精度高、分析时间短、计算成本低的优势。本文提出的分析方法在滑油冷却器抗冲击可靠性分析中具有良好的适用性,分析结果可为滑油冷却器的抗冲击设计提供技术指导和理论支撑。 展开更多
关键词 结构可靠性 BP神经网络 贝叶斯优化 SMOTE算法 滑油冷却器
在线阅读 下载PDF
基于粒子群优化的BP神经网络PID的加速度计组件温控算法 被引量:1
6
作者 魏国 朱旭 +3 位作者 高春峰 侯承志 程嘉奕 陈迈伦 《中国惯性技术学报》 北大核心 2025年第4期359-366,共8页
在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提... 在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提出了基于PSO-BPNN-PID控制器,利用粒子群优化算法和反向传播算法对神经网络PID控制器进行离线和在线的连接权值整定,实现石英挠性加速度计组件一体化温度控制算法,满足加速度计组件的自适应智能控制需求。仿真和实验结果表明,所提算法能够显著提升系统的温度稳定性,可实现±0.002℃的温度稳定控制。同时,验证了系统具备快速响应温度变化的能力,能够在短时间内将温度调整至设定值附近,并有效抑制超调现象。此外,实验还模拟了外部扰动情况,验证了系统在面对扰动时能够迅速恢复稳定状态,表现出优越的抗扰动能力,可以满足多种温度环境下的加速度计组件高精度温控应用需求。 展开更多
关键词 石英挠性加速度计 温度控制 粒子群优化算法 BP神经网络
在线阅读 下载PDF
基于改进的灰狼算法优化BP神经网络的入侵检测方法
7
作者 彭庆媛 王晓峰 +3 位作者 唐傲 华盈盈 何飞 刘建平 《现代电子技术》 北大核心 2025年第13期96-104,共9页
当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改... 当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改进的灰狼算法优化BP神经网络的入侵检测方法。改进的灰狼算法通过改变线性控制参数,以及在灰狼位置更新公式中加入反余切惯性权重策略,以扩展狼群的搜索范围,从而避免陷入局部最优解。利用改进的算法优化BP神经网络的初始权值和阈值,将优化的BP神经网络应用于入侵检测。实验结果表明,改进的灰狼算法具有更好的稳定性、寻优效率和寻优精度,改进的入侵检测方法不易陷入局部极小值,泛化能力强,预测精度高和可靠性好。 展开更多
关键词 非线性控制参数 惯性权重 灰狼优化算法 BP神经网络 入侵检测 网络安全
在线阅读 下载PDF
基于旗鱼算法优化BP神经网络的水-能源-粮食耦合系统安全特征测度分析
8
作者 刘东 刘海岳 +2 位作者 张祥敏 张亮亮 齐晓晨 《农业工程学报》 北大核心 2025年第11期229-242,共14页
针对区域水-能源-粮食耦合系统安全状况难以精准量化问题,该研究构建一种基于旗鱼优化算法改进的BP神经网络模型(sailfish optimization algorithm-back propagation neural network,SFO-BPNN),并将其应用于哈尔滨市2000—2022年WEF耦... 针对区域水-能源-粮食耦合系统安全状况难以精准量化问题,该研究构建一种基于旗鱼优化算法改进的BP神经网络模型(sailfish optimization algorithm-back propagation neural network,SFO-BPNN),并将其应用于哈尔滨市2000—2022年WEF耦合系统安全特征测度分析中。采用基于主成分分析法-R聚类分析法-皮尔逊相关系数法-变异系数法的优选方法构建WEF耦合系统安全评价指标体系。深入分析耦合系统安全时间演变特征与关键驱动因子。结果表明:哈尔滨市WEF耦合系统安全指数在研究时段内呈现先波动变化,后大幅提升,最后趋于稳定的趋势。降水量、顷均机电井数目、人均粮食产量和农机总动力等为关键驱动因子。构建的SFO-BPNN模型与传统BP神经网络模型和基于遗传算法优化的BP神经网络模型相比,平均绝对误差分别降低16.94%和3.36%、均方误差分别降低26.40%和16.93%、平均绝对百分比误差分别降低22.89%和2.66%、单次运行时间分别降低31.6%和30.5%、决定系数分别升高0.98%和0.15%,说明SFO-BPNN模型无论从精度还是效率方面都更具优势。研究结果可为水-能源-粮食耦合系统安全特征测度分析提供新模型,同时可为有效防控和降低区域安全风险提供参考。 展开更多
关键词 水-能源-粮食耦合系统 安全特征 旗鱼优化算法 BP神经网络
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
9
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于神经网络和遗传算法的机器人加工工艺优化
10
作者 吴福森 《金刚石与磨料磨具工程》 北大核心 2025年第2期256-265,共10页
以KUKAKR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模... 以KUKAKR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模型训练并进行预测;最后,采用遗传算法对磨削加工工艺参数进行优化。结果表明:磨削工艺参数对3个磨削力分量和磨削合力的影响主次顺序不同,基本上都随径向切深a_(e)、轴向切深a_(p)、进给速度v_(w)的增加呈增长趋势,随主轴转速n的增加呈下降趋势;基于BP神经网络建立的预测模型具有较好的预测精度和稳定性,符合预测要求;同时,采用遗传算法得到的优化磨削工艺参数组合是a_(e)=2.28 mm,a_(p)=2.98 mm,n=9586.65 r/min,v_(w)=2207.67 mm/min,此时的材料去除率预测值_(RMRRP)=14999.79 mm^(3)/min,材料去除率试验值R_(MRRT)=14194.44 mm^(3)/min,试验值相对预测值的相对误差为-5.37%。 展开更多
关键词 机器人加工 正交试验 BP神经网络 遗传算法 工艺参数优化
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
11
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于BP神经网络——遗传算法的咖啡壳炭化工艺参数优化
12
作者 张霞 苏盼杰 +2 位作者 朱静哲 王伊洋 黄峻伟 《智能化农业装备学报(中英文)》 2025年第1期51-58,共8页
生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备... 生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备过程中的炭化温度、炭化时间和升温速率等工艺参数的显著影响,不同炭化工艺不仅决定了生物炭的理化性质,还直接影响其作为炭基肥的缓释性能。传统的实验方法往往需要大量的时间和资源投入,因此,探索更加高效的优化方法成为了研究的热点。本研究采用了BP神经网络与遗传算法相结合的优化方法,针对咖啡壳生物炭的炭化过程中的炭化温度、炭化时间和升温速率3个关键工艺参数进行预测和优化。研究结果表明,采用BP神经网络—遗传算法优化后的炭基肥,其最佳工艺参数为炭化时间2.8 h、炭化温度780.7℃和升温速率15.1℃/min。在此工艺条件下制备的咖啡壳生物炭基肥,其7 d养分累计释放率为45.9%,表明缓释性能得到了显著提升。综上所述,本研究提出了一种基于BP神经网络和遗传算法的生物炭炭化工艺参数优化方法,能够有效提高炭基肥的缓释性能。该方法不仅为生物炭制备工艺的优化提供了新的技术路径,也为相关领域的研究提供了重要参考,对推动高性能炭基肥的发展具有积极意义。 展开更多
关键词 生物炭 BP神经网络 遗传算法 炭基肥 工艺参数优化
在线阅读 下载PDF
基于NSGA-Ⅱ和神经网络的长短叶片泵双目标参数优化
13
作者 梁兴 马志巍 +2 位作者 熊文龙 周泊 曹寒问 《水电能源科学》 北大核心 2025年第3期163-167,共5页
针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵... 针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵双目标优化函数,并采用NSGA-Ⅱ算法寻优,进而开展双目标泵参数优化研究。结果表明,基于BP神经网络预测泵性能较准确,其中效率偏差最大为1.98%,扬程偏差最大为1.82%。NSGA-Ⅱ算法所获得的最优方案在额定工况下比原型泵扬程、效率分别提高了7.4%、1.8%;对比优化前后泵内流速分布、压力脉动等,最优方案有效改善了流动的均匀性,减小了水力损失和压力脉动,使得叶轮内部流动更加稳定,为长短叶片泵参数优化设计提供了理论依据。 展开更多
关键词 长短叶片泵 性能优化 神经网络 NSGA-Ⅱ算法
在线阅读 下载PDF
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制
14
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 RBF神经网络 PID控制 精度
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
15
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 BP神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于神经网络代理模型的门式墩优化方法及软件研发
16
作者 柏华军 《铁道标准设计》 北大核心 2025年第3期106-112,共7页
针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化... 针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化数学模型;然后,基于有限元法构建门式墩训练样本集,采用拉丁超立方开展试验设计,建立BPNN神经网络代理模型;最后,采用NSGAII遗传优化算法对BPNN神经网络代理模型进行搜索,实现门式墩最优结构尺寸和钢束线形的搜索推荐。依托某门式墩结构设计,开展算法有效性和效率验证,结果表明,案例的优化时间由有限元法的45 h缩短至智能优化算法的15 min,优化算法在保证预测精度的同时提高优化效率180倍。 展开更多
关键词 铁路桥梁 门式墩 结构优化 BP神经网络 代理模型 多目标优化 NSGAII算法 拉丁超立方设计
在线阅读 下载PDF
面向YOLO神经网络的数据流架构优化研究 被引量:2
17
作者 穆宇栋 李文明 +5 位作者 范志华 吴萌 吴海彬 安学军 叶笑春 范东睿 《计算机学报》 北大核心 2025年第1期82-99,共18页
YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行... YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行模式与神经网络算法匹配度高,更能充分挖掘其中的数据并行性。然而,在数据流架构上部署YOLO神经网络时面临三个问题:(1)数据流架构的数据流图映射并不能结合YOLO神经网络中卷积层卷积核较小的特点,造成卷积运算数据复用率过低的问题,并进一步降低计算部件利用率;(2)数据流架构在算子调度时无法利用算子间结构高度耦合的特点,导致大量数据重复读取;(3)数据流架构上的数据存取与执行高度耦合、串序执行,导致数据存取延迟过高。为解决这些问题,本文设计了面向YOLO神经网络的数据流加速器DFU-Y。首先,结合卷积嵌套循环的执行模式,本文分析了小卷积核卷积运算的数据复用特征,并提出了更有利于执行单元内部数据复用的数据流图映射算法,从而整体提升卷积运行效率;然后,为充分利用结构耦合的算子间的数据复用,DFU-Y提出数据流图层次上的算子融合调度机制以减少数据存取次数、提升神经网络运行效率;最后,DFU-Y通过双缓存解耦合数据存取与执行,从而并行执行数据存取与运算,掩盖了程序间的数据传输延迟,提高了计算部件利用率。实验表明,相较数据流架构(DFU)和GPU(NVIDIA Xavier NX),DFU-Y分别获得2.527倍、1.334倍的性能提升和2.658倍、3.464倍的能效提升;同时,相较YOLO专用加速器(Arria-YOLO),DFU-Y在保持较好通用性的同时,达到了其性能的72.97%、能效的87.41%。 展开更多
关键词 YOLO算法 数据流架构 数据流图优化 卷积神经网络 神经网络加速
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:1
18
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
神经网络加速PSO算法的超材料吸波体设计 被引量:1
19
作者 戴书浩 孙俊 +2 位作者 彭艺 罗会龙 张莉 《传感器与微系统》 北大核心 2025年第2期90-94,共5页
在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料... 在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料吸波体的电磁参数进行准确地预测,其预测结果与仿真结果均方误差(MSE)不超过0.0011。在PSO算法对结构参数空间进行搜索的过程中,预测结果被用于算法优化过程中的适应度计算,PSO算法能够根据不同的适应度值自动调节结构参数以到达电磁波宽频带吸收的目的。该方法将设计耗时缩短为全波仿真设计耗时的0.3%。通过该方法设计的超材料吸波体在8.5~17.9 GHz频段内的吸波率大于90%,吸波带宽为9.4 GHz。此外该方法优化过程避免了人工干扰,能够移植到超材料的其他应用设计中。 展开更多
关键词 超材料吸波体 神经网络 粒子群优化算法
在线阅读 下载PDF
一种神经网络的多方向GWO优化方法
20
作者 张晓丽 闻俊 +3 位作者 朱贵富 许诺 聂佳磊 杨璨 《小型微型计算机系统》 北大核心 2025年第4期833-840,共8页
针对标准的GWO算法不稳定性和表现性能不佳问题,本文从多个方向提出优化路径.首先,为灰狼群体中增加最优解、候选狼群定义步长、候选狼群步长的权值进行优化、以及各优化方向相结合,对标准GWO算法进行优化改进,总共形成8种优化算法;然... 针对标准的GWO算法不稳定性和表现性能不佳问题,本文从多个方向提出优化路径.首先,为灰狼群体中增加最优解、候选狼群定义步长、候选狼群步长的权值进行优化、以及各优化方向相结合,对标准GWO算法进行优化改进,总共形成8种优化算法;然后将优化算法融入RNN、MLP和CMLP 3种神经网络中,总共构成24种预测模型;最后通过公共数据集进行了240次测试,结果表明,不同方向的优化可以提高各个神经网络预测模型的准确率及稳定性,具有更好的实用性. 展开更多
关键词 灰狼优化算法 神经网络 预测模型
在线阅读 下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部