期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于混沌搜索与精英交叉算子的磷虾觅食算法 被引量:8
1
作者 王磊 张汉鹏 《计算机工程》 CAS CSCD 北大核心 2015年第3期156-161,共6页
为解决磷虾觅食(KH)优化算法在处理高维多模态函数优化问题时存在局部搜索能力不强、收敛速度慢等问题,利用一种贪婪的精英交叉算子加速其收敛速度,使用基于逻辑自映射函数的混沌搜索算子避免局部极值的吸引,采用对立搜索算子提高初始... 为解决磷虾觅食(KH)优化算法在处理高维多模态函数优化问题时存在局部搜索能力不强、收敛速度慢等问题,利用一种贪婪的精英交叉算子加速其收敛速度,使用基于逻辑自映射函数的混沌搜索算子避免局部极值的吸引,采用对立搜索算子提高初始种群的质量。结合上述3种算子提出一种改进的磷虾觅食算法。在7个标准测试函数上的仿真实验结果表明,与KH及其改进算法相比,该算法在寻优精度和收敛速度方面均得到明显增强。 展开更多
关键词 磷虾觅食算法 局部搜索能力 对立策略 精英交叉算子 混沌搜索 收敛速度
在线阅读 下载PDF
基于广义反向学习的磷虾群算法及其在数据聚类中的应用 被引量:8
2
作者 丁成 王秋萍 王晓峰 《计算机应用》 CSCD 北大核心 2019年第2期336-342,共7页
针对磷虾群(KH)算法在寻优过程中因种群多样性降低而过早收敛的问题,提出基于广义反向学习的磷虾群算法GOBL-KH。首先,通过余弦递减策略确定步长因子平衡算法的探索与开发能力;然后,加入广义反向学习策略对每个磷虾进行广义反向搜索,增... 针对磷虾群(KH)算法在寻优过程中因种群多样性降低而过早收敛的问题,提出基于广义反向学习的磷虾群算法GOBL-KH。首先,通过余弦递减策略确定步长因子平衡算法的探索与开发能力;然后,加入广义反向学习策略对每个磷虾进行广义反向搜索,增强磷虾探索其周围邻域空间的能力。将改进的算法在15个经典测试函数上进行测试并与KH算法、步长线性递减的磷虾群(KHLD)算法和余弦递减步长的磷虾群(KHCD)算法比较,实验结果表明:GOBL-KH算法可有效避免早熟且具有较高的求解精度。为体现算法有效性,将GOBL-KH算法与K均值算法结合提出HK-KH算法用于解决数据聚类问题,即在每次迭代后用最优个体或经过K均值迭代一次后的新个体替换最差个体,使用UCI五个真实数据集进行测试并与K均值、遗传算法(GA)、粒子群优化(PSO)算法、蚁群算法(ACO)、KH算法、磷虾群聚类算法(KHCA)、改进磷虾群(IKH)算法进行比较,结果表明:HK-KH算法适用于解决数据聚类问题且具有较强的全局收敛性和较高的稳定性。 展开更多
关键词 磷虾群算法 余弦递减策略 广义反向学习 数据聚类 K均值聚类算法
在线阅读 下载PDF
具备反向学习和局部学习能力的磷虾群算法 被引量:5
3
作者 肖素琼 罗可 《计算机工程与应用》 CSCD 北大核心 2018年第18期34-39,共6页
针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法。利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选... 针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法。利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选取精英群体,通过自适应的Lévy飞行分布和改进的差分变异算子,提高种群的局部学习能力。这种新颖的元启发方式能加速收敛速度的同时可以保证磷虾群算法的鲁棒性。通过对8个基准函数进行仿真测试,实验结果表明:与最近的KH优化算法相比,该算法在收敛速度、收敛精度等方面得到明显改进。 展开更多
关键词 磷虾群优化算法 种群初始化 精英反向学习 差分变异算子 局部学习
在线阅读 下载PDF
基于动态压力控制算子的磷虾群算法 被引量:4
4
作者 沈莹 黄樟灿 +1 位作者 谈庆 刘宁 《计算机应用》 CSCD 北大核心 2019年第3期663-667,共5页
针对基础磷虾群(KH)算法在求解复杂函数优化问题时局部搜索能力差、求解精度低、收敛速度慢、容易陷入局部最优等问题,提出一种基于动态压力控制算子的磷虾群算法(DPCKH)。该算法将一种新的动态压力控制算子加入了标准磷虾群算法,使其... 针对基础磷虾群(KH)算法在求解复杂函数优化问题时局部搜索能力差、求解精度低、收敛速度慢、容易陷入局部最优等问题,提出一种基于动态压力控制算子的磷虾群算法(DPCKH)。该算法将一种新的动态压力控制算子加入了标准磷虾群算法,使其处理复杂函数优化问题更有效。动态压力控制算子通过欧氏距离量化了多个不同优秀个体对目标个体的诱导效应,进而在优秀个体附近加速产生新磷虾个体,提高了磷虾个体的局部探索能力。通过比较蚁群算法(ACO)、差分进化算法(DE)、磷虾群算法(KH)、改进的磷虾群算法(KHLD)和粒子群算法(PSO),DPCKH算法在7个测试函数上的结果表明,DPCKH算法与ACO算法、DE算法、KH算法、KHLD算法和PSO算法相比有着更强的局部勘测能力,其开采能力更强。 展开更多
关键词 磷虾群算法 动态压力控制算子 函数优化 开采能力 探索能力
在线阅读 下载PDF
基于改进磷虾群算法的服务组合优化 被引量:1
5
作者 廖水聪 孙鹏 +1 位作者 刘星辰 钟贇 《计算机应用》 CSCD 北大核心 2021年第12期3652-3657,共6页
面向服务的架构(SOA)下,针对服务组合优化过程中易陷入局部最优、时间开销大的问题,提出一种加入自适应交叉算子和随机扰动算子的改进磷虾群算法PRKH。首先基于服务质量(QoS)建立了服务组合优化模型,并给出不同结构下QoS的计算公式和归... 面向服务的架构(SOA)下,针对服务组合优化过程中易陷入局部最优、时间开销大的问题,提出一种加入自适应交叉算子和随机扰动算子的改进磷虾群算法PRKH。首先基于服务质量(QoS)建立了服务组合优化模型,并给出不同结构下QoS的计算公式和归一化处理方法。然后在磷虾群(KH)算法的基础上加入自适应的交叉概率和基于实际偏移量的随机扰动,从而在磷虾群的全局搜索能力和局部搜索能力之间达到良好平衡。最后通过仿真,把所提算法与KH算法、粒子群优化(PSO)算法、人工蜂群(ABC)算法和花朵授粉算法(FPA)进行对比,实验结果表明,PRKH算法能够更快找到QoS更优的复合服务。 展开更多
关键词 面向服务的架构 服务组合 服务质量 服务组合优化 磷虾群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部