期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Knowledge mining collaborative DESVM correction method in short-term load forecasting 被引量:3
1
作者 牛东晓 王建军 刘金朋 《Journal of Central South University》 SCIE EI CAS 2011年第4期1211-1216,共6页
Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used t... Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used to consider the load time series trend forecasting,intelligence forecasting DESVR model was applied to estimate the non-linear influence,and knowledge mining methods were applied to correct the errors caused by irregular events.In order to prove the effectiveness of the proposed model,an application of the daily maximum load forecasting was evaluated.The experimental results show that the DESVR model improves the mean absolute percentage error(MAPE) from 2.82% to 2.55%,and the knowledge rules can improve the MAPE from 2.55% to 2.30%.Compared with the single ARMA forecasting method and ARMA combined SVR forecasting method,it can be proved that TIK method gains the best performance in short-term load forecasting. 展开更多
关键词 load forecasting support vector regression knowledge mining ARMA differential evolution
在线阅读 下载PDF
CALL FOR PAPERS Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06)
2
《复杂系统与复杂性科学》 EI CSCD 2005年第1期84-86,共3页
Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as... Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as the study of the development and use of advanced information technologies and systems for national and international security-related applications. The First and Second Symposiums on ISI were held in Tucson,Arizona,in 2003 and 2004,respectively. In 2005,the IEEE International Conference on ISI was held in Atlanta,Georgia. These ISI conferences have brought together academic researchers,law enforcement and intelligence experts,information technology consultant and practitioners to discuss their research and practice related to various ISI topics including ISI data management,data and text mining for ISI applications,terrorism informatics,deception detection,terrorist and criminal social network analysis,crime analysis,monitoring and surveillance,policy studies and evaluation,information assurance,among others. We continue this stream of ISI conferences by organizing the Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06). WISI’06 will provide a stimulating forum for ISI researchers in Pacific Asia and other regions of the world to exchange ideas and report research progress. The workshop also welcomes contributions dealing with ISI challenges specific to the Pacific Asian region. 展开更多
关键词 SECURITY in conjunction with the Pacific Asia Conference on knowledge Discovery and Data mining CALL FOR PAPERS Workshop on Intelligence and Security Informatics ASIA
在线阅读 下载PDF
Use of Data Mining to Support the Development of Knowledge Intensive CAD
3
作者 K H Lau C Y Yip Alvin Wong 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期201-,共1页
In order to compete in the global manufacturing mar ke t, agility is the only possible solution to response to the fragmented market se gments and frequently changed customer requirements. However, manufacturing agil ... In order to compete in the global manufacturing mar ke t, agility is the only possible solution to response to the fragmented market se gments and frequently changed customer requirements. However, manufacturing agil ity can only be attained through the deployment of knowledge. To embed knowledge into a CAD system to form a knowledge intensive CAD (KIC) system is one of way to enhance the design compatibility of a manufacturing company. The most difficu lt phase to develop a KIC system is to capitalize a huge amount of legacy data t o form a knowledge database. In the past, such capitalization process could only be done solely manually or semi-automatic. In this paper, a five step model fo r automatic design knowledge capitalization through the use of data mining is pr oposed whilst details of how to select, verify and performance benchmarking an a ppropriate data mining algorithm for a specific design task will also be discuss ed. A case study concerning the design of a plastic toaster casing was used as an illustration for the proposed methodology and it was found that the avera ge absolute error of the predictions for the most appropriate algorithm is withi n 17%. 展开更多
关键词 Use of Data mining to Support the Development of knowledge Intensive CAD In KIC
在线阅读 下载PDF
KDD中规则提取的收敛网络方法及其应用 被引量:3
4
作者 熊范纶 邓超 《软件学报》 EI CSCD 北大核心 2000年第12期1635-1641,共7页
提出一种新的基于神经网络的规则提取方法 .提出的网络由一个主网络及其映射网络组成 ,具有二次收敛过程 .通过主网络的学习 (第 1次收敛 )完成知识学习和网络构造 ,在此基础上构造了其网络映射 ,通过该映射网络的收敛过程实现规则的提... 提出一种新的基于神经网络的规则提取方法 .提出的网络由一个主网络及其映射网络组成 ,具有二次收敛过程 .通过主网络的学习 (第 1次收敛 )完成知识学习和网络构造 ,在此基础上构造了其网络映射 ,通过该映射网络的收敛过程实现规则的提取 .该方法在规则提取时无须遍历解空间 ,从而很好地提高了搜索效率 ,降低了计算复杂度 .同时 ,还提出估计规则数下限的信度差方法 . 展开更多
关键词 KDD(knowledge discovery and data mining) 规则提取 神经网络 收敛网络 信度差
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部