该文主要考虑一类在R^(3)上带有Kirchhoff型非局部项的非线性椭圆方程−(a+b∫_(R)^(3)|∇u|^(2))Δu+V(x)u=Q(x)|u|^(p−1)u,x∈R^(3),(0.1)其中a,b>0是常数,p∈(1,5),V(x)和Q(x)均为L^(∞)(R^(3))函数.由于非局部项的出现,若按经典的...该文主要考虑一类在R^(3)上带有Kirchhoff型非局部项的非线性椭圆方程−(a+b∫_(R)^(3)|∇u|^(2))Δu+V(x)u=Q(x)|u|^(p−1)u,x∈R^(3),(0.1)其中a,b>0是常数,p∈(1,5),V(x)和Q(x)均为L^(∞)(R^(3))函数.由于非局部项的出现,若按经典的思路来应用山路引理得到这类方程的解(即山路解),必须要求3≤p<5.当p∈(1,3)时,应用山路引理的困难在于无法验证(PS)序列的有界性.为克服该困难,文献[Acta Math Sci,2025,45B(2):385-400]通过引入新的技巧证明了方程(0.1)在Q(x)≡1时对p∈(1,5)有山路解,并讨论了山路解与基态解的关系.该文拟在克服V(x)和Q(x)的相互影响下,将文献[Acta Math Sci,2025,45B(2):385-400]中的结果推广到Q(x)■1的一般情形.展开更多
文摘该文主要考虑一类在R^(3)上带有Kirchhoff型非局部项的非线性椭圆方程−(a+b∫_(R)^(3)|∇u|^(2))Δu+V(x)u=Q(x)|u|^(p−1)u,x∈R^(3),(0.1)其中a,b>0是常数,p∈(1,5),V(x)和Q(x)均为L^(∞)(R^(3))函数.由于非局部项的出现,若按经典的思路来应用山路引理得到这类方程的解(即山路解),必须要求3≤p<5.当p∈(1,3)时,应用山路引理的困难在于无法验证(PS)序列的有界性.为克服该困难,文献[Acta Math Sci,2025,45B(2):385-400]通过引入新的技巧证明了方程(0.1)在Q(x)≡1时对p∈(1,5)有山路解,并讨论了山路解与基态解的关系.该文拟在克服V(x)和Q(x)的相互影响下,将文献[Acta Math Sci,2025,45B(2):385-400]中的结果推广到Q(x)■1的一般情形.
基金Supported by the National Natural Science Foundation of China (62262012)the Foundation of Hainan University (KYQD22094, KYQD23050)Hainan Provincial Natural Science Foundation of China(124QN176)。
基金The National Natural Science Foundation of China(11101253)the Fundamental Research Funds for the Central Universities(GK201503016)the Science Program of Education Department of Shaanxi Province(14JK1461)