The emergence of quantum computer will threaten the security of existing public-key cryptosystems, including the Diffie Hellman key exchange protocol, encryption scheme and etc, and it makes the study of resistant qua...The emergence of quantum computer will threaten the security of existing public-key cryptosystems, including the Diffie Hellman key exchange protocol, encryption scheme and etc, and it makes the study of resistant quantum cryptography very urgent. This motivate us to design a new key exchange protocol and eneryption scheme in this paper. Firstly, some acknowledged mathematical problems was introduced, such as ergodic matrix problem and tensor decomposition problem, the two problems have been proved to NPC hard. From the computational complexity prospective, NPC problems have been considered that there is no polynomial-time quantum algorithm to solve them. From the algebraic structures prospective, non-commutative cryptography has been considered to resist quantum. The matrix and tensor operator we adopted also satisfied with this non-commutative algebraic structures, so they can be used as candidate problems for resisting quantum from perspective of computational complexity theory and algebraic structures. Secondly, a new problem was constructed based on the introduced problems in this paper, then a key exchange protocol and a public key encryption scheme were proposed based on it. Finally the security analysis, efficiency, recommended parameters, performance evaluation and etc. were also been given. The two schemes has the following characteristics, provable security,security bits can be scalable, to achieve high efficiency, quantum resistance, and etc.展开更多
Canetti and Herzog have already proposed universally composable symbolic analysis(UCSA) to analyze mutual authentication and key exchange protocols. However,they do not analyze group key exchange protocol. Therefore,t...Canetti and Herzog have already proposed universally composable symbolic analysis(UCSA) to analyze mutual authentication and key exchange protocols. However,they do not analyze group key exchange protocol. Therefore,this paper explores an approach to analyze group key exchange protocols,which realize automation and guarantee the soundness of cryptography. Considered that there exist many kinds of group key exchange protocols and the participants’ number of each protocol is arbitrary. So this paper takes the case of Burmester-Desmedt(BD) protocol with three participants against passive adversary(3-BD-Passive) . In a nutshell,our works lay the root for analyzing group key exchange protocols automatically without sacrificing soundness of cryptography.展开更多
Certificateless one-round key exchange(CL-ORKE)protocols enable each participant to share a common key with only one round of communication which greatly saves communication cost.CLORKE protocols can be applied to sce...Certificateless one-round key exchange(CL-ORKE)protocols enable each participant to share a common key with only one round of communication which greatly saves communication cost.CLORKE protocols can be applied to scenarios with limited communication,such as space communication.Although CL-ORKE protocols have been researched for years,lots of them only consider what secrets can be compromised but ignore the time when the secrets have been corrupted.In CL-ORKE protocols,the reveal of the long-term key attacks can be divided into two different attacks according to the time of the long-term key revealed:the attack to weak Forward Security(wFS)and the attack to strong Forward Security(sFS).Many CLKE protocols did not take into account the sFS property or considered sFS as wFS.In this paper,we first propose a new security model for CL-ORKE protocols which considers the sFS property as well as the Ephemeral Key Reveal attack.Then,we give a CL-ORKE protocol which is called CLORKE-SFS.CLORKE-SFS is provably secure under the proposed model provided the Elliptic Curve Computational Diffie-Hellman(ECCDH)and the Bilinear Computational Diffie-Hellman problem(BCDH)assumption hold.The security model and the protocol may give inspiration for constructing oneround key exchange protocols with perfect forward security in certificateless scenarios.展开更多
The key exchange is a fundamental building block in the cryptography. Several provable security models for the key exchange protocol are proposed. To determine the exact properties required by the protocols, a single ...The key exchange is a fundamental building block in the cryptography. Several provable security models for the key exchange protocol are proposed. To determine the exact properties required by the protocols, a single unified security model is essential, The eCK , eCK and CK models are examined and the result is proved that the eCK' model is the strongest provable security model for the key exchange. The relative security strength among these models is analyzed. To support the implication or non-implication relations among these models, the formal proofs and the counter-examples are given.展开更多
Security analysis of cryptographic protocols has been widely studied for many years.As far as we know,we have not found any methods to effectively analyze group key exchange protocols for the three parties yet,which d...Security analysis of cryptographic protocols has been widely studied for many years.As far as we know,we have not found any methods to effectively analyze group key exchange protocols for the three parties yet,which did not sacrifice the soundness of cryptography.Recently,Canetti and Herzog have proposed Universally Composable Symbolic Analysis(UCSA) of two-party mutual authentication and key exchange protocol which is based on the symmetric encryption schemes.This scheme can analyze the protocols automatically and guarantee the soundness of cryptography.Therefore,we discuss group key exchange protocol which is based on Joux Tripartite Diffie-Hellman(JTDH) using UCSA.Our contribution is analyzing group key exchange protocol effectively without damaging the soundness of cryptography.展开更多
基金the National Natural Science Foundation of China,the State Key Program of National Natural Science of China,the Major Research Plan of the National Natural Science Foundation of China,Major State Basic Research Development Program of China (973 Program),the Hubei Natural Science Foundation of China
文摘The emergence of quantum computer will threaten the security of existing public-key cryptosystems, including the Diffie Hellman key exchange protocol, encryption scheme and etc, and it makes the study of resistant quantum cryptography very urgent. This motivate us to design a new key exchange protocol and eneryption scheme in this paper. Firstly, some acknowledged mathematical problems was introduced, such as ergodic matrix problem and tensor decomposition problem, the two problems have been proved to NPC hard. From the computational complexity prospective, NPC problems have been considered that there is no polynomial-time quantum algorithm to solve them. From the algebraic structures prospective, non-commutative cryptography has been considered to resist quantum. The matrix and tensor operator we adopted also satisfied with this non-commutative algebraic structures, so they can be used as candidate problems for resisting quantum from perspective of computational complexity theory and algebraic structures. Secondly, a new problem was constructed based on the introduced problems in this paper, then a key exchange protocol and a public key encryption scheme were proposed based on it. Finally the security analysis, efficiency, recommended parameters, performance evaluation and etc. were also been given. The two schemes has the following characteristics, provable security,security bits can be scalable, to achieve high efficiency, quantum resistance, and etc.
基金supported by National Natural Science Foundation of China No.61003262,National Natural Science Foundation of China No.60873237Doctoral Fund of Ministry of Education of China No.20070007071
文摘Canetti and Herzog have already proposed universally composable symbolic analysis(UCSA) to analyze mutual authentication and key exchange protocols. However,they do not analyze group key exchange protocol. Therefore,this paper explores an approach to analyze group key exchange protocols,which realize automation and guarantee the soundness of cryptography. Considered that there exist many kinds of group key exchange protocols and the participants’ number of each protocol is arbitrary. So this paper takes the case of Burmester-Desmedt(BD) protocol with three participants against passive adversary(3-BD-Passive) . In a nutshell,our works lay the root for analyzing group key exchange protocols automatically without sacrificing soundness of cryptography.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under Grant(61902049,31960119)Joint Special Fund for Basic Research of Local Undergraduate Universities(Parts)in Yunnan Province under Grant(2018FH001-063,2018FH001-106)Dali University Innovation Team Project(ZKLX2020308).
文摘Certificateless one-round key exchange(CL-ORKE)protocols enable each participant to share a common key with only one round of communication which greatly saves communication cost.CLORKE protocols can be applied to scenarios with limited communication,such as space communication.Although CL-ORKE protocols have been researched for years,lots of them only consider what secrets can be compromised but ignore the time when the secrets have been corrupted.In CL-ORKE protocols,the reveal of the long-term key attacks can be divided into two different attacks according to the time of the long-term key revealed:the attack to weak Forward Security(wFS)and the attack to strong Forward Security(sFS).Many CLKE protocols did not take into account the sFS property or considered sFS as wFS.In this paper,we first propose a new security model for CL-ORKE protocols which considers the sFS property as well as the Ephemeral Key Reveal attack.Then,we give a CL-ORKE protocol which is called CLORKE-SFS.CLORKE-SFS is provably secure under the proposed model provided the Elliptic Curve Computational Diffie-Hellman(ECCDH)and the Bilinear Computational Diffie-Hellman problem(BCDH)assumption hold.The security model and the protocol may give inspiration for constructing oneround key exchange protocols with perfect forward security in certificateless scenarios.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2006AA706103)~~
文摘The key exchange is a fundamental building block in the cryptography. Several provable security models for the key exchange protocol are proposed. To determine the exact properties required by the protocols, a single unified security model is essential, The eCK , eCK and CK models are examined and the result is proved that the eCK' model is the strongest provable security model for the key exchange. The relative security strength among these models is analyzed. To support the implication or non-implication relations among these models, the formal proofs and the counter-examples are given.
基金supported by the National Natural Science Foundation of China under Grants No.61003262,No.60873237,No.61100205,No.60873001the Fundamental Research Funds for the Central Universities under Grant No.2009RC0212
文摘Security analysis of cryptographic protocols has been widely studied for many years.As far as we know,we have not found any methods to effectively analyze group key exchange protocols for the three parties yet,which did not sacrifice the soundness of cryptography.Recently,Canetti and Herzog have proposed Universally Composable Symbolic Analysis(UCSA) of two-party mutual authentication and key exchange protocol which is based on the symmetric encryption schemes.This scheme can analyze the protocols automatically and guarantee the soundness of cryptography.Therefore,we discuss group key exchange protocol which is based on Joux Tripartite Diffie-Hellman(JTDH) using UCSA.Our contribution is analyzing group key exchange protocol effectively without damaging the soundness of cryptography.