期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于神经网络模型可解释性的降水预报
1
作者
樊仲欣
王妍
王若曈
《热带气象学报》
CSCD
北大核心
2024年第6期1030-1044,共15页
为提高局地精细化预报的准确性和可靠性,提出了一种基于核函数KernelExplainer和可解释性“夏普值”(SHAP值)聚类分析的神经网络降水预报技术。该方法首先通过正态化分布变换解决神经网络的输出抖动问题,然后使用KernelExplainer估计由...
为提高局地精细化预报的准确性和可靠性,提出了一种基于核函数KernelExplainer和可解释性“夏普值”(SHAP值)聚类分析的神经网络降水预报技术。该方法首先通过正态化分布变换解决神经网络的输出抖动问题,然后使用KernelExplainer估计由卷积(CNN)层、长短期记忆(LSTM)网络、全连接层构建的深度学习神经网络模型,并获取气象要素参数m和时间步长参数tl对于预测结果的贡献值SHAP,最后通过聚类分析SHAP值,在每次滚动预报中动态调整模型的m和tl参数,从而提高了无降水和强降水事件的预报效果。使用该方法基于2018年1月—2023年12月的观测和数值预报模式数据建立了南京信息工程大学大气观测基地的降水预报模型。实验证明,该方法相对于固定参数的深度学习神经网络模型、多层卷积长短期记忆网络(多层ConvLSTM)、模拟集合卷积神经网络(AnEn-CNN)和数值预报模式,降水平均绝对误差减少8%、7%、11%和19%。
展开更多
关键词
卷积
长短期记忆
ReLU激活函数
kernelexplainer
SHAP
降水预报
在线阅读
下载PDF
职称材料
题名
基于神经网络模型可解释性的降水预报
1
作者
樊仲欣
王妍
王若曈
机构
南京信息工程大学大气科学与环境气象国家级实验教学示范中心
国家气象中心
出处
《热带气象学报》
CSCD
北大核心
2024年第6期1030-1044,共15页
基金
国家自然科学基金项目(42075115)
江苏省自然科学基金项目(BK20221344)共同资助。
文摘
为提高局地精细化预报的准确性和可靠性,提出了一种基于核函数KernelExplainer和可解释性“夏普值”(SHAP值)聚类分析的神经网络降水预报技术。该方法首先通过正态化分布变换解决神经网络的输出抖动问题,然后使用KernelExplainer估计由卷积(CNN)层、长短期记忆(LSTM)网络、全连接层构建的深度学习神经网络模型,并获取气象要素参数m和时间步长参数tl对于预测结果的贡献值SHAP,最后通过聚类分析SHAP值,在每次滚动预报中动态调整模型的m和tl参数,从而提高了无降水和强降水事件的预报效果。使用该方法基于2018年1月—2023年12月的观测和数值预报模式数据建立了南京信息工程大学大气观测基地的降水预报模型。实验证明,该方法相对于固定参数的深度学习神经网络模型、多层卷积长短期记忆网络(多层ConvLSTM)、模拟集合卷积神经网络(AnEn-CNN)和数值预报模式,降水平均绝对误差减少8%、7%、11%和19%。
关键词
卷积
长短期记忆
ReLU激活函数
kernelexplainer
SHAP
降水预报
Keywords
convolution
long short-term memory
ReLU activation function
kernelexplainer
Shapley additive explanations(SHAP)
precipitation forecasting
分类号
P457.6 [天文地球—大气科学及气象学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于神经网络模型可解释性的降水预报
樊仲欣
王妍
王若曈
《热带气象学报》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部