期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach 被引量:1
1
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
在线阅读 下载PDF
Probability distribution of wind power volatility based on the moving average method and improved nonparametric kernel density estimation 被引量:4
2
作者 Peizhe Xin Ying Liu +2 位作者 Nan Yang Xuankun Song Yu Huang 《Global Energy Interconnection》 2020年第3期247-258,共12页
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met... In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE. 展开更多
关键词 Moving average method Signal decomposition Wind power fluctuation characteristics kernel density estimation Constrained order optimization
在线阅读 下载PDF
ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2
3
作者 陈斌 李斌 +1 位作者 冯爱民 潘志松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t... One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 展开更多
关键词 one-class support vector machine(OCSVM) support vector data description(SVDD) kernel density estimation
在线阅读 下载PDF
A KERNEL ESTIMATOR OF A DENSITY FUNCTION IN MULTIVARIATE CASE FROM RANDOMLY CENSORED DATA
4
作者 周勇 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期170-180,共11页
A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error ... A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied. 展开更多
关键词 kernel density estimator asymptotic normality product-limit estimator mean square error and censored data.
在线阅读 下载PDF
ASYMPTOTIC NORMALITY OF KERNEL ESTIMATES OF A DENSITY FUNCTION UNDER ASSOCIATION DEPENDENCE
5
作者 林正炎 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期345-350,共6页
Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a k... Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions. 展开更多
关键词 Associated random variables negatively associated random variables kernel estimate of a density function central limit theorem
在线阅读 下载PDF
Improved Algorithm of Variable Bandwidth Kernel Particle Filter
6
作者 葛欣 丁恩杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第3期303-307,共5页
Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is fa... Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm. 展开更多
关键词 particle filter kernel density estimation kernel bandwidth SELF-ADJUSTING
在线阅读 下载PDF
Research on energy storage capacity configuration for PV power plants using uncertainty analysis and its applications 被引量:7
7
作者 Honglu Zhu Ruyin Hou +1 位作者 Tingting Jiang Qingquan Lv 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期608-618,共11页
Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connect... Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connection requirements using fixed energy storage capacity configuration methods.In this paper,a method of configuring energy storage capacity is proposed based on the uncertainty of PV power generation.A k-means clustering algorithm is used to classify weather types based on differences in solar irradiance.The power forecast errors in different weather types are analyzed,and an energy storage system is used to compensate for the errors.The kernel density estimation is used to fit the distributions of the daily maximum power and maximum capacity requirements of the energy storage system;the power and capacity of the energy storage unit are calculated at different confidence levels.The optimized energy storage configuration of a PV plant is presented according to the calculated degrees of power and capacity satisfaction.The proposed method was validated using actual operating data from a PV power station.The results indicated that the required energy storage can be significantly reduced while compensating for power forecast errors. 展开更多
关键词 PV power Weather classification Error analysis kernel density estimation Energy storage capacity configuration
在线阅读 下载PDF
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:2
8
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling DATA-DRIVEN Robust kernel density estimation Robust optimization Integrated demand response
在线阅读 下载PDF
Analysis on Potential Conflict Frequency of Intersected Air Routes in Terminal Airspace Design 被引量:1
9
作者 王超 韩邦村 刘菲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期580-588,共9页
In order to obtain accurate conflict risks in terminal airspace design,the concept and calculation model of potential conflict frequency for intersected routes are proposed.Conflict frequency is represented by the pro... In order to obtain accurate conflict risks in terminal airspace design,the concept and calculation model of potential conflict frequency for intersected routes are proposed.Conflict frequency is represented by the product of horizontal conflict frequency and vertical conflict probability.The horizontal conflict frequency is derived from the probability density distribution of conflicts in a period of time.Based on the recorded radar trajectory data,the concept and model of ROUTE distance are proposed,and the probability density function of aircraft height at a specified ROUTE distance is deduced by kernel density estimation.Furthermore,vertical conflict probability and its horizontal distribution are achieved.Examples of three intersected arrival and departure route design schemes are studied.Compared with scheme 1,the conflict frequency values of the other two improved schemes decrease to53% and 24%,respectively.The results show that the model can quantify potential conflict frequency of intersected routes. 展开更多
关键词 air traffic management terminal airspace design horizontal conflict frequency vertical conflict proba-bility kernel density estimation(KDE)
在线阅读 下载PDF
Identifying Fake and Potential Corporate Members in Telecommunications Operators
10
作者 石文华 张晓航 +1 位作者 龚雪 吕廷杰 《China Communications》 SCIE CSCD 2013年第8期150-157,共8页
Nowadays,mobile operators in China mainland are facing fierce competition from one to another,and their focus of customer competition has,in general,shifted from public to corporate customers.One big challenge in corp... Nowadays,mobile operators in China mainland are facing fierce competition from one to another,and their focus of customer competition has,in general,shifted from public to corporate customers.One big challenge in corporate customer management is how to identify fake corporate members and potential corporate members from corporate customers.In this study,we have proposed an identification method that combines the rule-based and probabilistic methods.Through this method,fake corporate members can be eliminated and external potential members can be mined.The experimental results based on the data obtained from a local mobile operator revealed that the proposed method can effectively and efficiently identify fake and potential corporate members.The proposed method can be used to improve the management of corporate customers. 展开更多
关键词 fake-member identification corporate customer rule-based method kernel density estimation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部