期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于改进混合蛙跳的KFCM算法 被引量:2
1
作者 赵小强 刘悦婷 《计算机工程与应用》 CSCD 2013年第4期141-145,共5页
针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法... 针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法的更新策略中,再用改进后的混合蛙跳算法求得最优解作为KFCM算法的初始聚类中心,利用KFCM算法优化初始聚类中心,求得全局最优解,从而有效克服了KFCM算法的缺点。人造数据和经典数据集的实验结果表明,新算法与KFCM和FCM聚类算法相比,寻优能力更强,迭代次数更少,聚类效果更好。 展开更多
关键词 核模糊C-均值聚类 改进的混合蛙跳算法 聚类分析 数据挖掘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部