The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther...The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.展开更多
Experimental quasi-static crushing tests were conducted by using a universal testing machine format kenaf-epoxy composite elliptical cones. The work focused on the vertex angle's effects on energy absorption capab...Experimental quasi-static crushing tests were conducted by using a universal testing machine format kenaf-epoxy composite elliptical cones. The work focused on the vertex angle's effects on energy absorption capability; the vertex angles vary from 0° to 24° in 6 increments. The failure modes of the kenaf fibre epoxy composite elliptical cones were observed utilising delegate photos taken during the quasistatic crushing test. Load-deformation curves and deformation histories of typical specimens are presented and discussed. Moreover, the effects of cone vertex angles on the load carrying capacity and the energy absorption capability are also discussed. The results show that the energy absorption abilities significantly influence the ellipticity vertex angle as the load carrying capacity. We concluded that the quasi-static axial crushing behaviour of elliptical mat laminated composite cones is strongly affected by their structural geometry and the specific energy absorbed by the composite elliptical cones with vertex angles of 6°, 12°, 18°, and 24°, which is more than an elliptical cone with the vertex angle of 0°(the elliptical tube) at any given deformation. However, the specific energy absorption for the elliptical composite cone showed a positive correlation, i.e., the more the angle increased, the more energy was absorbed. In this regard, an elliptical composite cone with a 24° angle exhibited the best energy absorption capability.展开更多
基金Universiti Kuala Lumpur(UniKL)the Ministry of Education Malaysia for providing the scholarship award+1 种基金financially support through UniKL Grant Scheme(STRG 15144)to the principal author in this projectHiCOE grant(6369107)from the Ministry of Education,Malaysia。
文摘The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.
基金the Universiti Putra Malaysia for the financial support for this research programme using HiCoE Grant,Ministry of Higher Education,Malaysia
文摘Experimental quasi-static crushing tests were conducted by using a universal testing machine format kenaf-epoxy composite elliptical cones. The work focused on the vertex angle's effects on energy absorption capability; the vertex angles vary from 0° to 24° in 6 increments. The failure modes of the kenaf fibre epoxy composite elliptical cones were observed utilising delegate photos taken during the quasistatic crushing test. Load-deformation curves and deformation histories of typical specimens are presented and discussed. Moreover, the effects of cone vertex angles on the load carrying capacity and the energy absorption capability are also discussed. The results show that the energy absorption abilities significantly influence the ellipticity vertex angle as the load carrying capacity. We concluded that the quasi-static axial crushing behaviour of elliptical mat laminated composite cones is strongly affected by their structural geometry and the specific energy absorbed by the composite elliptical cones with vertex angles of 6°, 12°, 18°, and 24°, which is more than an elliptical cone with the vertex angle of 0°(the elliptical tube) at any given deformation. However, the specific energy absorption for the elliptical composite cone showed a positive correlation, i.e., the more the angle increased, the more energy was absorbed. In this regard, an elliptical composite cone with a 24° angle exhibited the best energy absorption capability.