This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地...针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。展开更多
利用出行特征数据识别综合交通运输通道是合理布局城市群综合运输通道的关键技术。本文基于城市群手机信令数据,提出一种综合运输通道识别四阶段方法框架,即数据准备、运输方式划分、最短路径搜索和通道识别。在运输方式划分方面,提出...利用出行特征数据识别综合交通运输通道是合理布局城市群综合运输通道的关键技术。本文基于城市群手机信令数据,提出一种综合运输通道识别四阶段方法框架,即数据准备、运输方式划分、最短路径搜索和通道识别。在运输方式划分方面,提出一种以运输平均速度和站点POI (Point of Interest)位置为决策变量的高速铁路、普速铁路和公路多方式划分算法。在最短路搜索方面,设计一种基于双向A*算法的最短路径搜索算法。在通道识别方面,基于行政边界划分通道区段并以运输量为综合运输通道区段判别参数。以京津冀城市群为例进行实证分析,结果表明,本文方法能够有效处理城市群手机信令数据,并识别出6条综合运输通道,验证了方法的可行性和准确性。在案例数据下,京津冀城市群公路和铁路的运输量占比分别为81.87%和18.13%,公路的短程运输客流较铁路更多;节假日因素显著提高了综合运输通道的客流量,平均运输量增加62.6%,平均客流周转量提升61.2%。展开更多
为解决移动机器人在丘陵山区不规则、崎岖地形等复杂果园环境下的路径规划问题,提出一种基于改进灰狼算法的移动机器人三维路径规划方法。通过模拟实际地理环境,建立三维果园地形及障碍物模型,构建路径规划目标函数模型。通过引入麻雀...为解决移动机器人在丘陵山区不规则、崎岖地形等复杂果园环境下的路径规划问题,提出一种基于改进灰狼算法的移动机器人三维路径规划方法。通过模拟实际地理环境,建立三维果园地形及障碍物模型,构建路径规划目标函数模型。通过引入麻雀搜索算法(sparrow search algorithm,SSA)改进标准灰狼算法(grey wolf optimizer,GWO)的初始化方式、收敛因子、局部搜索能力及全局搜索能力。仿真实验结果表明,所提出的算法相较于其他算法,具有寻优速度快、路径规划距离最优、收敛速度快的优点,表明了本文方法的有效性和优越性。展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。
文摘利用出行特征数据识别综合交通运输通道是合理布局城市群综合运输通道的关键技术。本文基于城市群手机信令数据,提出一种综合运输通道识别四阶段方法框架,即数据准备、运输方式划分、最短路径搜索和通道识别。在运输方式划分方面,提出一种以运输平均速度和站点POI (Point of Interest)位置为决策变量的高速铁路、普速铁路和公路多方式划分算法。在最短路搜索方面,设计一种基于双向A*算法的最短路径搜索算法。在通道识别方面,基于行政边界划分通道区段并以运输量为综合运输通道区段判别参数。以京津冀城市群为例进行实证分析,结果表明,本文方法能够有效处理城市群手机信令数据,并识别出6条综合运输通道,验证了方法的可行性和准确性。在案例数据下,京津冀城市群公路和铁路的运输量占比分别为81.87%和18.13%,公路的短程运输客流较铁路更多;节假日因素显著提高了综合运输通道的客流量,平均运输量增加62.6%,平均客流周转量提升61.2%。
文摘为解决移动机器人在丘陵山区不规则、崎岖地形等复杂果园环境下的路径规划问题,提出一种基于改进灰狼算法的移动机器人三维路径规划方法。通过模拟实际地理环境,建立三维果园地形及障碍物模型,构建路径规划目标函数模型。通过引入麻雀搜索算法(sparrow search algorithm,SSA)改进标准灰狼算法(grey wolf optimizer,GWO)的初始化方式、收敛因子、局部搜索能力及全局搜索能力。仿真实验结果表明,所提出的算法相较于其他算法,具有寻优速度快、路径规划距离最优、收敛速度快的优点,表明了本文方法的有效性和优越性。