期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Improved scheme to accelerate support vector regression 被引量:1
1
作者 Zhao Yongping Sun Jianguo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1086-1090,共5页
The computational cost of support vector regression in the training phase is O (N^3), which is very expensive for a large scale problem. In addition, the solution of support vector regression is of parsimoniousness,... The computational cost of support vector regression in the training phase is O (N^3), which is very expensive for a large scale problem. In addition, the solution of support vector regression is of parsimoniousness, which has relation to a part of the whole training data set. Hence, it is reasonable to reduce the training data set. Aiming at the scheme based on k-nearest neighbors to reduce the training data set with the computational complexity O (kMN^2), an improved scheme is proposed to accelerate the reducing phase, which cuts down the computational complexity from O (kMN^2) to O (MN^2). Finally, experimental results on benchmark data sets validate the effectiveness of the improved scheme. 展开更多
关键词 support vector regression parsimoniousness k-nearest neighbors computational complexity.
在线阅读 下载PDF
基于KNN-TSVR算法的MIMO-OFDM系统信道估计 被引量:5
2
作者 李朔 雷为民 张伟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期176-181,242,共7页
为了提高多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计性能,提出了一种基于K近邻加权孪生支持向量回归(KNN-TSVR)的信道频率响应估计算法.该算法的工作过程是首先用最小二乘算法对导频位置的信道参数进行估计,获取训练样本,然后... 为了提高多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计性能,提出了一种基于K近邻加权孪生支持向量回归(KNN-TSVR)的信道频率响应估计算法.该算法的工作过程是首先用最小二乘算法对导频位置的信道参数进行估计,获取训练样本,然后用K近邻(KNN)算法对训练样本进行预处理,得到赋予各样本的权重,最后由加权TSVR对MIMO-OFDM系统所有位置的信道参数进行插值估计.本文提出的改进的加权TSVR信道估计方法不仅具有TSVR对非线性关系回归的优势,同时引入KNN算法对TSVR进行改进,使得该算法与传统TSVR相比,具有更好的回归性能和抗噪声能力.对非线性MIMO-OFDM信道进行估计的仿真实验结果证实了这一结论. 展开更多
关键词 信道估计 K最近邻(knn)算法 多进多出(MIMO)系统 正交频分复用(OFDM) 孪生支持向量回归(TSVR)
在线阅读 下载PDF
基于集成学习的交通事故严重程度预测研究与应用 被引量:12
3
作者 单永航 张希 +2 位作者 胡川 丁涛军 姚远 《计算机工程》 CAS CSCD 北大核心 2024年第2期33-42,共10页
目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模... 目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模型。基于真实交通事故数据集NASS-CDS完成训练,模型输入为车辆传感器可感知得到的事故相关特征,输出为车内乘员最高受伤级别。在第1层中,通过实验对不同学习器组合进行训练,最终综合考虑预测性能以及耗时挑选K近邻、自适应提升树、极度梯度提升树作为基学习器;在第2层中,为降低过拟合,采用逻辑回归作为元学习器。实验结果表明,该方法准确率达到85.01%,在精确率、召回率和F1值方面优于其他个体模型和集成模型,该预测结果可作为智能车辆决策规划模块先验信息,帮助车辆做出正确的决策,减缓事故损害。最后阐述了模型在L_(2)辅助驾驶与L_(4)自动驾驶车辆中的应用,在常规车辆安全防护的基础上进一步提升车辆的安全性。 展开更多
关键词 交通安全 交通事故严重程度预测 智能车辆 集成学习 K近邻 自适应提升树 极度梯度提升树 逻辑回归
在线阅读 下载PDF
云计算中保护数据隐私的快速多关键词语义排序搜索方案 被引量:20
4
作者 杨旸 刘佳 +1 位作者 蔡圣暐 杨书略 《计算机学报》 EI CSCD 北大核心 2018年第6期1346-1359,共14页
可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重... 可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重加以区分.其次,对检索关键词进行语义拓展,计算语义相似度,将语义相似度、域加权评分和相关度分数三者结合,构造了更加准确的文档索引.然后,针对现有的MRSE(Multi-keyword Ranked Search over Encrypted cloud data)方案效率不高的缺陷,将创建的文档向量分块,生成维数较小的标记向量.通过对文档标记向量和查询标记向量的匹配,有效地过滤了大量的无关文档,减少了计算文档相关度分数和排序的时间,提高了搜索的效率.最后,在加密文档向量时,将文档向量分段,每一段与对应维度的矩阵相乘,使得构建索引的时间减少,进一步提高了方案的效率.理论分析和实验结果表明:该方案实现了快速的多关键词语义模糊排序搜索,在保障数据隐私安全的同时,有效地提高了检索效率,减少了创建索引的时间,并返回更加满足用户需求的排序结果. 展开更多
关键词 云计算 可搜索加密 语义相似度 域加权评分 快速knn(k-nearest neighbor)算法
在线阅读 下载PDF
基于偏最小二乘回归的鲁棒性特征选择与分类算法 被引量:9
5
作者 尚志刚 董永慧 +1 位作者 李蒙蒙 李志辉 《计算机应用》 CSCD 北大核心 2017年第3期871-875,共5页
提出一种基于偏最小二乘回归的鲁棒性特征选择与分类算法(RFSC-PLSR)用于解决特征选择中特征之间的冗余和多重共线性问题。首先,定义一个基于邻域估计的样本类一致性系数;然后,根据不同k近邻(k NN)操作筛选出局部类分布结构稳定的保守样... 提出一种基于偏最小二乘回归的鲁棒性特征选择与分类算法(RFSC-PLSR)用于解决特征选择中特征之间的冗余和多重共线性问题。首先,定义一个基于邻域估计的样本类一致性系数;然后,根据不同k近邻(k NN)操作筛选出局部类分布结构稳定的保守样本,用其建立偏最小二乘回归模型,进行鲁棒性特征选择;最后,在全局结构角度上,用类一致性系数和所有样本的优选特征子集建立偏最小二乘分类模型。从UCI数据库中选择了5个不同维度的数据集进行数值实验,实验结果表明,与支持向量机(SVM)、朴素贝叶斯(NB)、BP神经网络(BPNN)和Logistic回归(LR)四种典型的分类器相比,RFSC-PLSR在低维、中维、高维等不同情况下,分类准确率、鲁棒性和计算效率三种性能上均表现出较强的竞争力。 展开更多
关键词 偏最小二乘回归 K近邻 噪声样本 特征选择 鲁棒性
在线阅读 下载PDF
一种基于MapReduce的短时交通流预测方法 被引量:11
6
作者 梁轲 谭建军 李英远 《计算机工程》 CAS CSCD 北大核心 2015年第1期174-179,共6页
非参数回归方法是短时交通流预测常用的方法,但现有非参数回归方法存在预测速度与精度之间的矛盾。为此,提出一种适用于海量历史数据、基于Map Reduce与遗传算法的非参数回归短时交通流预测方法。通过引入Map Reduce并行计算框架,加快K... 非参数回归方法是短时交通流预测常用的方法,但现有非参数回归方法存在预测速度与精度之间的矛盾。为此,提出一种适用于海量历史数据、基于Map Reduce与遗传算法的非参数回归短时交通流预测方法。通过引入Map Reduce并行计算框架,加快K最近邻算法的搜索速度。在数据预处理阶段利用遗传算法优化关键参数的设置,并采用Map Reduce加速参数优化过程,以解决遗传算法迭代运算时间长的问题。实验结果表明,该方法在保证交通流预测精度的前提下,明显提高了预测速度,并且具有较好的可伸缩性。 展开更多
关键词 交通流预测 非参数回归 K最近邻搜索 遗传算法 Map Reduce编程模型 并行计算
在线阅读 下载PDF
融合分数阶微分与PIMP-RF算法的集成学习模型预测成熟期苹果可溶性固形物含量 被引量:1
7
作者 黄华 刘亚 +5 位作者 库尔班古丽·都力昆 曾繁琳 玛依热·麦麦提 阿瓦古丽·麦麦提 买地努尔汗·艾则孜 郭俊先 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第10期3059-3066,共8页
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要生理指标,能够用于苹果品质分析和成熟度预测。以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以等间隔周期3 d采摘样本,测其380~1100 nm的可见/近红外光谱和SSC... 可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要生理指标,能够用于苹果品质分析和成熟度预测。以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以等间隔周期3 d采摘样本,测其380~1100 nm的可见/近红外光谱和SSC,共552个样本。然后融合分数阶微分(FD)及置换重要性-随机森林(PIMP-RF)算法,构建成熟期苹果SSC预测的集成学习模型。结果表明,基于PLS模型优选的分数阶微分阶次为0阶、0.4阶、1.1阶和1.6阶,且通过PIMP-RF算法进行特征重要性和可解释性分析结果显示,利用可见/近红外光谱预测成熟期苹果SSC的关键波长主要为可见光波段,这为今后研发新疆冰糖心红富士苹果的快速无损检测设备提供参考;基于分数阶微分技术和PIMP-RF算法构建的成熟期苹果SSC集成学习模型具有很好的预测能力,其训练集的相关系数r等于0.9892,平均绝对误差MAE等于0.2412,均方根误差RMSE等于0.3091,平均绝对百分误差等于0.0183;测试集的相关系数r等于0.9038,平均绝对误差MAE等于0.5499,均方根误差RMSE等于0.7408,平均绝对百分误差等于0.0434,相比于FD0-PIMP-RF、FD0.4-PIMP-RF、FD1.1-PIMP-RF和FD1.6-PIMP-RF模型,集成学习模型为最优。故而,集成分数阶微分技术与PIMP-RF算法,结合可见近红外光谱技术可有效地实现成熟期苹果的可溶性固形物含量预测。 展开更多
关键词 可见/近红外光谱 分数阶微分 置换重要性-随机森林 K近邻(knn)回归 可溶性固形物含量
在线阅读 下载PDF
基于LWSVR的繁忙机场航班滑出时间预测 被引量:4
8
作者 邢志伟 姜松岳 +1 位作者 罗谦 罗晓 《系统仿真学报》 CAS CSCD 北大核心 2020年第5期927-935,共9页
针对繁忙机场航班滑出时间预测准确率低的问题,结合局部回归和加权支持向量回归,提出基于局部加权支持向量回归的离港航班滑出时间预测模型。该模型采用K最近邻方法,减小训练样本集容量,并为每个预测样本构建一个预测模型。通过计算训... 针对繁忙机场航班滑出时间预测准确率低的问题,结合局部回归和加权支持向量回归,提出基于局部加权支持向量回归的离港航班滑出时间预测模型。该模型采用K最近邻方法,减小训练样本集容量,并为每个预测样本构建一个预测模型。通过计算训练样本与预测样本间的马氏距离,来优化加权支持向量回归中高斯核加权函数的带宽参数,获得加权系数。结合某机场离港航班数据仿真分析,实验结果表明模型在误差允许范围内的预测准确率达到83.33%,模型更加稳定。 展开更多
关键词 滑出时间 局部回归 加权支持向量回归 K最近邻 高斯加权函数
在线阅读 下载PDF
Using Deep Learning for Soybean Pest and Disease Classification in Farmland 被引量:3
9
作者 Si Meng-min Deng Ming-hui Han Ye 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第1期64-72,共9页
To accurately identify soybean pests and diseases, in this paper, a kind of deep convolution network model was used to determine whether or not a soybean crop possessed pests and diseases. The proposed deep convolutio... To accurately identify soybean pests and diseases, in this paper, a kind of deep convolution network model was used to determine whether or not a soybean crop possessed pests and diseases. The proposed deep convolution network could learn the highdimensional feature representation of images by using their depth. An inception module was used to construct a neural network. In the inception module, multiscale convolution kernels were used to extract the distributed characteristics of soybean pests and diseases at different scales and to perform cascade fusion. The model then trained the SoftMax classifier in a uniformed framework. This realized the model of soybean pests and diseases so as to verify the effectiveness of this method. In this study, 800 images of soybean leaf images were taken as the experimental objects. Of these 800 images, 400 were selected for network training, and the remaining 400 images were used for the network test. Furthermore, the classical convolutional neural network was optimized. The accuracies before and after optimization were 96.25% and 95.81%, respectively, in terms of extracting image features. This type of research might be applied to achieve a degree of automation in agricultural field management. 展开更多
关键词 deep learning support VECTOR machine(SVM) k-nearest neighbor(knn) SOYBEAN PEST and disease
在线阅读 下载PDF
Detection and recognition of LPI radar signals using visibility graphs 被引量:3
10
作者 WAN Tao JIANG Kaili +2 位作者 LIAO Jingyi TANG Yanli TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1186-1192,共7页
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l... The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches. 展开更多
关键词 DETECTION RECOGNITION visibility graph(VG) support vector machine(SVM) k-nearest neighbor(knn)
在线阅读 下载PDF
基于类邻域字典的线性回归文本分类 被引量:4
11
作者 武娇 洪彩凤 +2 位作者 顾永春 顾兴全 金世举 《计算机工程》 CAS CSCD 北大核心 2021年第8期93-99,108,共8页
文本表示的高维性会增加文本分类时的计算复杂度。针对该问题,构建基于类邻域字典的线性回归分类模型。采用K近邻方法构造各类别的类邻域字典,根据对测试样本的不同表示,分别提出基于级联类邻域字典和基于类邻域字典的线性回归分类算法... 文本表示的高维性会增加文本分类时的计算复杂度。针对该问题,构建基于类邻域字典的线性回归分类模型。采用K近邻方法构造各类别的类邻域字典,根据对测试样本的不同表示,分别提出基于级联类邻域字典和基于类邻域字典的线性回归分类算法。此外,为缓解噪声数据对分类性能的影响,通过度量测试样本与各个类别之间的相关度裁剪噪声类数据。实验结果表明,该模型对长文本和短文本均能够得到较高的分类精度和计算效率,同时,噪声类裁剪策略使其对包含较多类别数的文本语料也具有较好的分类性能。 展开更多
关键词 稀疏表示分类 K近邻 字典学习 线性回归分类 文本分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部